Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (19): 3983-3991.doi: 10.12307/2025.510
Previous Articles Next Articles
Hu Huali1, 2, Deng Fahua1, 2, Liu Yuancheng2, Wang Siqi2, Zhang Jingxin2, Lu Tingting1, 2, Huang Hai1, 2, Wei Sixi1, 2
Received:
2024-04-11
Accepted:
2024-06-09
Online:
2025-07-08
Published:
2024-09-12
Contact:
Wei Sixi, MD, Doctoral supervisor, Chief technician, Clinical Laboratory Center of Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
About author:
Hu Huali, Master candidate, Clinical Laboratory Center of Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:
CLC Number:
Hu Huali, Deng Fahua, Liu Yuancheng, Wang Siqi, Zhang Jingxin, Lu Tingting, Huang Hai, Wei Sixi. Effects of long non-coding RNA KIAA0125 on proliferation and apoptosis of acute myeloid leukemia U937 cells[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(19): 3983-3991.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 lncKIAA0125在急性髓系白血病患者骨髓及外周血中的表达 使用高通量测序技术分析3例健康供者及3例急性髓系白血病患者骨髓标本,并使用edgeR分析获得差异表达的lncRNA,结果显示与健康对照组相比,急性髓系白血病组差异表达的lncRNA有1 117个,其中有438个表达上调,679个表达下调(图1A,B);进一步分析各差异表达基因,结果显示lncKIAA0125在急性髓系白血病患者骨髓中呈高表达(图1C)。利用GEPIA数据库统计分析了173例急性髓系白血病患者和70例健康人骨髓细胞中lncKIAA0125 mRNA的表达与预后的关系,结果显示lncKIAA0125在急性髓系白血病患者骨髓细胞中呈高表达(图1D),生存分析发现lncKIAA0125高表达组的总生存期短于lncKIAA0125低表达组(P=0.005 8,图1E)。qRT-PCR结果显示lncKIAA0125在急性髓系白血病患者外周血中呈高表达(图1F)。因此选择lncKIAA0125进行后续研究。"
2.2 lncKIAA0125表达水平与急性髓系白血病患者临床特征的关系 将74例急性髓系白血病患者以lncKIAA0125相对表达量( 2-ΔΔCt)中位数6.06为界,分为lncKIAA0125低表达组(n=37)及高表达组(n=37)。患者的临床资料如表2所示,lncKIAA0125高表达组比低表达组年龄更大(P=0.045 1);lncKIAA0125高表达组预后不良患者比例明显高于低表达组(35.1% vs. 13.5%,P=0.030 2);与lncKIAA0125低表达组相比,lncKIAA0125高表达组性别、外周血白细胞及血小板水平、骨髓原始细胞比例均无显著差异(P > 0.05)。"
2.3 敲低lncKIAA0125对U937细胞增殖及凋亡的影响 使用慢病毒技术构建lncKIAA0125稳定敲低的U937细胞系,qRT-PCR验证敲低效率(图2A),选择sh-lnc KIAA0125#3(即sh-lncKIAA0125组)进行后续研究。CCK-8结果显示与sh-NC组相比,sh-lncKIAA0125组的U937细胞增殖能力减弱(图2B)。流式细胞术结果显示,与sh-NC组相比,sh-lncKIAA0125组的U937细胞凋亡率增加(图2C,D)。Western blot结果显示,与sh-NC组相比,sh-lncKIAA0125组增殖相关蛋白PCNA表达降低,抗凋亡蛋白Bcl-2表达降低,促凋亡蛋白Bax表达增加(图2E,F)。"
2.4 过表达lncKIAA0125对U937细胞增殖及凋亡的影响 利用CRISPR/Cas9-SAM系统构建稳定过表达lncKIAA0125的U937细胞系,qRT-PCR验证lncKIAA0125过表达效率,sgRNA-1的过表达效率最高,因此选择sgRNA-1(即OE-lncKIAA0125组)进行后续研究(图3A)。CCK-8结果显示,与Vector组相比,OE-lncKIAA0125组的U937细胞增殖能力增加(图3B),流式细胞术结果显示Vector组与OE-lncKIAA0125组的U937细胞凋亡率无显著差异(图3C,D),Western blot结果显示,与Vector组相比,OE-lncKIAA0125组增殖相关蛋白PCNA表达增加,但抗凋亡蛋白Bcl-2及促凋亡蛋白Bax表达无显著差异(图3E,F)。 2.5 敲低lncKIAA0125对Wnt/β-catenin通路的影响 研究表明,lncKIAA0125可通过Wnt/β-catenin通路调节结直肠癌的生长和转移[21],说明lncKIAA0125可能通过影响Wnt/β-catenin信号通路来发挥作用。因此,该研究拟进一步探讨在急性髓系白血病细胞系——U937细胞中敲低lncKIAA0125对Wnt/β-catenin通路的影响。Western blot结果显示,与sh-NC组相比,sh-lncKIAA0125组的β-catenin、TCF4、c-Myc、Cyclin D1蛋白表达水平降低(图4A,B)。qRT-PCR结果显示,与sh-NC组相比,sh-lncKIAA0125组Wnt/β-catenin通路的下游基因c-Myc、Cyclin D1 mRNA表达水平降低(图4C)。以上结果提示,在敲低lncKIAA0125后,抑制了Wnt/β-catenin信号通路,导致通路中的关键蛋白β-catenin降低,与β-catenin相结合的蛋白TCF4水平降低,从而抑制下游基因c-Myc、Cyclin D1的转录,进一步抑制U937细胞的增殖并促进细胞凋亡。 2.6 过表达lncKIAA0125对Wnt/β-catenin通路的影响 Western blot结果显示,与Vector组相比,OE-lncKIAA0125组的β-catenin、TCF4、c-Myc、Cyclin D1蛋白表达水平增加(图5A,B)。qRT-PCR结果显示,与Vector组相比,OE-lncKIAA0125组Wnt/β-catenin通路的下游基因c-Myc、Cyclin D1 mRNA表达水平增加(图5C)。以上结果提示,在过表达lncKIAA0125后,激活了Wnt/β-catenin信号通路,使通路中的关键蛋白β-catenin增加,与β-catenin相结合的蛋白TCF4水平增加,从而促进下游基因c-Myc、Cyclin D1的转录,进一步促进了U937细胞的增殖。"
[1] LIU H. Emerging agents and regimens for AML. J Hematol Oncol. 2021; 14(1):49. [2] MOHAMED JIFFRY MZ, KLOSS R, AHMED-KHAN M, et al. A review of treatment options employed in relapsed/refractory AML. Hematology. 2023;28(1):2196482. [3] MINCIACCHI VR, KUMAR R, KRAUSE DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells. 2021;10(1):117. [4] DAL BELLO R, PACCHIARDI K, CHAUVEL C, et al. Relative Mitochondrial Priming Predicts Survival in Older AML Patients Treated Intensively. Hemasphere. 2022;7(1):e819. [5] GUERRA VA, DINARDO C, KONOPLEVA M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):145-153. [6] BRIDGES MC, DAULAGALA AC, KOURTIDIS A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. [7] HERMAN AB, TSITSIPATIS D, GOROSPE M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82(12):2252-2266. [8] ZHANG Y, WANG X, HU C, et al. Shiny transcriptional junk: lncRNA-derived peptides in cancers and immune responses. Life Sci. 2023;316:121434. [9] DAHARIYA S, PADDIBHATLA I, KUMAR S, et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol. 2019; 112:82-92. [10] KAYSER S, LEVIS MJ. Updates on targeted therapies for acute myeloid leukaemia. Br J Haematol. 2022;196(2):316-328. [11] DU A, YANG Q, LUO X. Cuproptosis-related lncRNAs as potential biomarkers of AML prognosis and the role of lncRNA HAGLR/miR-326/CDKN2A regulatory axis in AML. Am J Cancer Res. 2023;13(9):3921-3940. [12] LIU S, ZHOU J, YE X, et al. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia. 2023;37(7):1421-1434. [13] YANG Y, ZHAO Y, ZHANG W, et al. Whole transcriptome sequencing identifies crucial genes associated with colon cancer and elucidation of their possible mechanisms of action. Onco Targets Ther. 2019;12:2737-2747. [14] DINIZ MG, FRANÇA JA, VILAS-BOAS FAS, et al. The long noncoding RNA KIAA0125 is upregulated in ameloblastomas. Pathol Res Pract. 2019;215(3): 466-469. [15] HUNG SY, LIN CC, HSU CL, et al. The expression levels of long non-coding RNA KIAA0125 are associated with distinct clinical and biological features in myelodysplastic syndromes. Br J Haematol. 2021;192(3):589-598. [16] NG SW, MITCHELL A, KENNEDY JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433-437. [17] WANG YH, LIN CC, HSU CL, et al. Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125. Ann Hematol. 2021;100(2):487-498. [18] SI H, WANG J, HE R, et al. Identification of U937JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol. 2022; 11:807200. [19] BENNETT JM, CATOVSKY D, DANIEL MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451-458. [20] ROBINSON MD, MCCARTHY DJ, SMYTH GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. [21] YANG Y, ZHAO Y, HU N, et al. lncRNA KIAA0125 functions as a tumor suppressor modulating growth and metastasis of colorectal cancer via Wnt/β-catenin pathway. Cell Biol Int. 2019;43(12):1463-1470. [22] LU Q, QU W, WEN Y, et al. Single-cell RNA-seq reveals the links between the metabolic heterogeneity and cell identity in NBM and AML. Br J Haematol. 2024;204(3):1100-1104. [23] BOUCHACOURT B, HOSPITAL MA, ZEMMOUR C, et al. Post-remission therapy of adults aged 60 and older with acute myeloid leukemia in first complete remission: role of treatment intensity on the outcome. Ann Hematol. 2020;99(4):773-780. [24] 令狐顺,肖青,王欣,等.老年急性髓系白血病患者临床特征与预后分析[J].中国药业,2023,32(12): 66-71. [25] STEMLER J, CORNELY OA. Antifungal Prophylaxis in Acute Myeloid Leukemia: New Drugs, New Challenges?: Summary of the EHA Guideline on Antifungal Prophylaxis in Adult Patients With Acute Myeloid Leukemia Treated With Novel-targeted Therapies. Hemasphere. 2022;6(7):e742. [26] 杨淳,张莺莺,张军.急性髓性细胞白血病免疫分型特点及其与疗效、预后关系的研究[J].标记免疫分析与临床,2021,28(3):462-465. [27] 朱海波,赵明峰,李玉明,等.初治急性髓系白血病患者首次诱导化疗后血小板计数与预后的关系研究[J].中国全科医学,2016,19(29):3528-3533. [28] JAYARAMAN S, PAZHANI J, PRIYAVEERARAGHAVAN V, et al. PCNA and Ki67: Prognostic proliferation markers for oral cancer. Oral Oncol. 2022;130: 105943. [29] SASAKI H, HIROSE T, OURA T, et al. Selective Bcl-2 inhibition promotes hematopoietic chimerism and allograft tolerance without myelosuppression in nonhuman primates. Sci Transl Med. 2023;15(690):eadd5318. [30] FAIRLIE WD, LEE EF. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans. 2021;49(5):2397-2410. [31] SPITZ AZ, GAVATHIOTIS E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci. 2022;43(3):206-220. [32] LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. [33] YU F, YU C, LI F, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307. [34] ZHANG Y, WANG X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. [35] XUE W, YANG L, CHEN C, et al. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024;81(1):79. [36] SAKODA T, KIKUSHIGE Y, MIYAMOTO T, et al. TIM-3 signaling hijacks the canonical Wnt/β-catenin pathway to maintain cancer stemness in acute myeloid leukemia. Blood Adv. 2023;7(10):2053-2065. [37] YE W, WANG J, HUANG J, et al. ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification. Front Med. 2023;17(4):685-698. [38] WU A, BAO Y, YU H, et al. Berberine Accelerates Odontoblast Differentiation by Wnt/β-Catenin Activation. Cell Reprogram. 2019;21(2):108-114. [39] BARZILAI-TUTSCH H, MORIN V, TOULOUSE G, et al. Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development. Elife. 2022;11:e72098. [40] COLE MD, COWLING VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008; 9(10):810-815. [41] DUFFY MJ, O’GRADY S, TANG M, et al. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154. [42] JHA RK, KOUZINE F, LEVENS D. MYC function and regulation in physiological perspective. Front Cell Dev Biol. 2023;11:1268275. [43] LIU S, QIAO X, WU S, et al. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis. 2022;27(11-12):913-928. [44] RU Y, CHEN XJ, ZHAO ZW, et al. CyclinD1 and p57kip2 as biomarkers in differentiation, metastasis and prognosis of gastric cardia adenocarcinoma. Oncotarget. 2017;8(43):73860-73870. |
[1] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[2] | Li Jun, Gong Jingjing, Sun Guobin, Guo Rui, Ding Yang, Qiang Lijuan, Zhang Xiaoli, Fang Zhanhai . miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by regulating mitogen-activated protein kinase signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1609-1617. |
[3] | Chi Wenxin, Zhang Cunxin, Gao Kai, Lyu Chaoliang, Zhang Kefeng. Mechanism by which nobiletin inhibits inflammatory response of BV2 microglia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1321-1327. |
[4] | Hu Taotao, Liu Bing, Chen Cheng, Yin Zongyin, Kan Daohong, Ni Jie, Ye Lingxiao, Zheng Xiangbing, Yan Min, Zou Yong. Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1343-1349. |
[5] | Jin Kai, Tang Ting, Li Meile, Xie Yuan. Effects of conditioned medium and exosomes of human umbilical cord mesenchymal stem cells on proliferation, migration, invasion, and apoptosis of hepatocellular carcinoma cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1350-1355. |
[6] | Liu Qi, Li Linzhen, Li Yusheng, Jiao Hongzhuo, Yang Cheng, Zhang Juntao. Icariin-containing serum promotes chondrocyte proliferation and chondrogenic differentiation of stem cells in the co-culture system of three kinds of cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1371-1379. |
[7] | Lang Mecuo, Zhang Yilin, Wang Li. MiR-338-3p affects proliferation and apoptosis of alveolar bone osteoblasts by targeting receptor activator of nuclear factor-kappaB ligand [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 899-907. |
[8] | Niu Yongkang, Feng Zhiwei, Wang Yaobin, Liu Zhongcheng, Xiang Dejian, Liang Xiaoyuan, Yi Zhi, Zhan Hongwei, Geng Bin, Xia Yayi. Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 908-916. |
[9] | Xiang Pan, Che Yanjun, Luo Zongping. Compressive stress induces degeneration of cartilaginous endplate cells through the SOST/Wnt/beta-catenin pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 951-957. |
[10] | Liu Chengyuan, Guo Qianping. Differential effects of kartogenin on chondrogenic and osteogenic differentiation of rat and rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7490-7498. |
[11] | Fang Yuan, Qian Zhiyong, He Yuanhada, Wang Haiyan, Sha Lirong, Li Xiaohe, Liu Jing, He Yachao, Zhang Kai, Temribagen. Mechanism of Mongolian medicine Echinops sphaerocephalus L. in proliferation and angiogenesis of vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7519-7528. |
[12] | Shi Tongtong, Deng Rongxia, Zhang Jianguang. Differences in physicochemical properties and collagen secretion stimulation of natural and synthetic hydroxyapatite particles [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7278-7285. |
[13] | Yin Hang, Song Kui. Effect of crocin hydrogel on chondrocytes and MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7293-7300. |
[14] | Wang Zhaoyan, Wang Qian, Liu Weipeng, Yang Hui, Luan Zuo, Qu Suqing. Effect of fibronectin on differentiation of human neural stem cells into oligodendrocyte precursor cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6661-6666. |
[15] | Kang Linzhi, Liu Zhenshuai, Wei Jiaxu, Chang Na, Zhu Dacheng. Inhibitory effects of sinomenine hydrochloride in T-cell acute lymphoblastic leukemia CEM cells and transcriptomic analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6674-6680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||