[1] WUSIMAN P, MAIMAITITUERXUN B, GULI, et al. Epidemiology and Pattern of Oral and Maxillofacial Trauma. J Craniofac Surg. 2020;31(5): e517-e520.
[2] 杨志良.钛板坚强内固定术用于颌面骨折治疗的临床研究[J].现代预防医学,2012,39(13):3462-3463.
[3] 平江涛,黄国贤,张勇辉,等.下颌骨骨折的微型钛板坚固内固定术疗效分析[J].吉林医学,2012,33(14):2296-2297.
[4] 郑志勋,翟敏,黄宏,等. 牵引钉颌间牵引术联合微型钛板内固定治疗颌骨骨折的效果分析[J].深圳中西医结合杂志,2020,3(5): 150-151.
[5] 朱伟政,叶茂昌,王来平,等.可吸收接骨板在下颌骨骨 折内固定治疗中的临床评价[J].口腔颌面外科杂志,2013,23(6):440.
[6] THOREN H, SNALL J, KORMI E, et al. Symptomatic plate removal after treatment of facial fractures. J Craniomaxillofac Surg. 2010;38(7): 505-510.
[7] 梁一雷,苏武.聚左旋乳酸可吸收夹板在裸突颈内固定术中的应用效果观察[J].中国临床新医学,2012,5(10):958.
[8] IZUMI Y, KAORI I, JYUNKO N, et al. Comparison of Material- Related Complications After Bilateral Sagittal Split Mandibular Setback Surgery: Biodegradable Versus Titanium Miniplates. J Oral Maxillofac Surg. 2012;70(4):919-924.
[9] SVERZUT CE, KATO RB, ROSA AL, et al. Comparative study of bone repair in mandibular body osteotomy between metallic and absorbable 2.0 mm internal fixation systems. Histological and histometric analysis in dogs: a pilot study. Int J Oral Maxillofac Surg. 2012;41(11): 1361-1368.
[10] PAENG JY, H ONG J, KIM CS, et al. Comparative study of skeletal stability between bicortical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism. J Craniomaxillofac Surg. 2012;40(8):660-664.
[11] 丁琳琳,张宜澜,杨茂进,等.聚左旋乳酸可吸收接骨板在下颌骨骨折内固定术中的应用价值 [J]. 创伤外科杂志,2020,22(4):267-270.
[12] SONG IS, CHOI J, KIM SR, et al. Stability of bioabsorbable fixation systems according to different locations of mandibular fracture: A three-dimensional analysis. J Craniomaxillofac Surg. 2021;49(8): 732-737.
[13] 李明喆,徐晓峰,徐兵.不同程度老年人萎缩性无牙颌下颌骨骨折的内固定方式选择及相关生物力学分析[J].中国口腔颌外科杂志, 2018,16(4):328-333.
[14] RUES S, SCHMITTER M, KAPPEL S, et al. Effect of bone quality and quantity on the primary stability of dental implants in a simulated bicortical placement. Clin Oral Investig. 2021;25(3):1265-1272.
[15] 孙庚林,周健,郑孝慈,等.下颌骨骨折生物接骨内固定的三维有限元分析[J].口腔颌面外科杂志,2005,15(1):39-42.
[16] LEMOS CAA, VERRI FR, NORITOMI PY, et al. Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. J Prosthet Dent. 2021;125(1):137.e1-137.e10.
[17] 缑小蕊,周政,姜丹丹,等.种植覆盖义齿修复不同骨质类型的 KennedyⅠ类缺失的三维有限元分析 [J].口腔医学研究,2020, 36(9):855-860.
[18] 葛奕辰,蒋少康,李轻如,等.“All-on-4” 在不同骨质条件下应力分布的三维有限元分析[J].口腔医学研究,2016,32(12):1252-1256.
[19] BUJTÁR P, SÁNDOR GK, BOJTOS A, et al. Finite element analysis of the human mandible at 3 different stages of life. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(3):301-309.
[20] KOC D, DOGAN A, BEK B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent. 2010;4(2):223-232.
[21] LANGENBACH GE, HANNAM AG. The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Arch Oral Biol. 1999;44(7):557-573.
[22] KIM DY, SUNG IY, CHO YC, et al. Bioabsorbable plates versus metal miniplate systems for use in endoscope-assisted open reduction and internal fixation of mandibular subcondylar fractures. J Craniomaxillofac Surg. 2018;46(3):413-417.
[23] LEE HB, OH JS, KIM SG, et al. Comparison of titanium and biodegradable miniplates for fixation of mandibular fractures. J Oral Maxillofac Surg. 2010;68(9):2065-2069.
[24] STANTON DC, LIU F, YU JW, et al. Use of bioresorbable plating systems in paediatric mandible fractures. J Craniomaxillofac Surg. 2014;42(7): 1305-1309.
[25] 牛谦云,孟翔祥,吴龑,等.生物可吸收性微型接骨板内固定术治疗下颌骨骨折患者的效果[J].中国民康医学,2022,34(5):19-21.
[26] 韩婧,解东平,王慧珊,等.微型钛板与生物可吸收板在下颌骨骨切开术固定中的应力比较[J].上海口腔医学,2020,29(3):237-241.
[27] LIU JN, ONG HS, WANG MY, et al. Randomized control trial comparing the titanium osteosynthesis and the biodegradable osteosynthesis in mandibulotomy access. Head Neck. 2019;41(4):915-923.
[28] 赵志强,多力昆·吾甫尔.可吸收接骨板与微型钛板在下颌骨骨折中临床应用效果评价[J].口腔颌面外科杂志,2017,27(6):417-421.
[29] LOVALD ST, KHRAISHI T, WAGNER J, et al. Mechanical design optimization of bioabsorbable fixation devices for bone fractures. J Craniofac Surg. 2009;20(2):389-398.
[30] WESTBURY LD, SHERE C, EDWARDS MH, et al. Cluster Analysis of Finite Element Analysis and Bone Microarchitectural Parameters Identifies Phenotypes with High Fracture Risk. Calcif Tissue Int. 2019;105(3): 252-262.
[31] YE Y, YOU W, ZHU W, et al. The Applications of Finite Element Analysis in Proximal Humeral Fractures. Comput Math Methods Med. 2017; 2017:4879836.
[32] CURREY J. Measurement of the mechanical properties of bone: a recent history. Clin Orthop Relat Res. 2009;467(8):1948-1954.
[33] 孙英华.生物可吸收性微型接骨板与微型钛内固定系统治疗下颌骨骨折的临床比较研究[J].中国伤残医学,2021,29(24):53-55.
[34] 吕佳,刘翠玲,蓝菁,等.动态载荷下种植体位置和直径对悬臂梁种植固定义齿应力影响的三维有限元研究[J].华西口腔医学杂志, 2013,31(6):552-556.
[35] 安尼卡尔•安尼瓦尔,帕丽黛姆•图尔迪,阿迪力•麦木提敏,等.上颌前牙区不同种植修复体在不同咬合受力下的三维有限元分析[J]. 中国组织工程研究,2020,24(16):2531-2536.
[36] LI Z, GAO S, CHEN H, et al. Micromotion of implant-abutment interfaces (IAI) after loading: correlation of finite element analysis with in vitro performances. Med Biol Eng Comput. 2019;57(5):1133-1144.
[37] COX T, KOHN MW, IMPELLUSO T. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures. J Oral Maxillofac Surg. 2003;61(4):481-487; discussion 487-488.
[38] WAGNER A, KRACH W, SCHICHO K, et al. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):678-686.
[39] BLEACH NC, TANNER KE, KELLOMÄKI M, et al. Effect of filler type on the mechanical properties of self-reinforced polylactide-calcium phosphate composites. J Mater Sci Mater Med. 2001;12(10-12):911-915.
[40] RHA EY, PAIK H, BYEON JH. Bioabsorbable plates and screws fixation in mandible fractures: clinical retrospective research during a 10-year period. Ann Plast Surg. 2015;74(4):432-436.
[41] 谢铁松,雷如军,邵义敏,等.不同固定材料对下颌骨骨折愈合的影响[J].医学综述,2015,21(1):190-191. |