Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (28): 6037-6045.doi: 10.12307/2025.475
Previous Articles Next Articles
Zhang Jianchao, Xiao Li, Zhang Kun
Received:
2024-04-18
Accepted:
2024-07-10
Online:
2025-10-08
Published:
2024-12-07
Contact:
Zhang Kun, PhD, Senior engineer, IMEIK Technology Development Co., Ltd., Beijing 101204, China
About author:
Zhang Jianchao, MS, Technical Design Engineer, IMEIK Technology Development Co., Ltd., Beijing 101204, China
2.1 基于压缩应力表征透明质酸钠凝胶交联反应进程 2.1.1 交联度对透明质酸钠凝胶交联反应进程的影响 不同交联度透明质酸钠凝胶的压缩应力随交联时间的变化情况,见表1,图3。交联反应6-22 h,透明质酸钠凝胶压缩应力随着交联时间的延长而增大,在交联反应22 h时凝胶压缩应力达到最大,交联程度达到最大;交联反应22-30 h,透明质酸钠凝胶的压缩应力缓慢下降,原因是随着交联时间的延长,在碱性环境中透明质酸钠凝胶可能发生降解,凝胶压缩应力逐渐下降。交联反应时间在22 h左右时,透明质酸钠凝胶压缩应力达到最大,并且不同交联度(交联度1%-4%)透明质酸钠凝胶的交联反应时间无明显差异,交联过程中凝胶压缩应力变化规律保持一致,合适的交联反应时间介于20-24 h。"
2.1.4 反应温度对透明质酸钠交联反应进程的影响 由表4和图6可知,4 ℃下交联反应168 h,透明质酸钠凝胶的压缩应力达到最大,为(20.93±0.19) Pa;25 ℃下交联反应22 h,透明质酸钠凝胶的压缩应力达到最大,为(10.88±0.10) Pa;37 ℃交下交联反应8 h,透明质酸钠凝胶的压缩应力达到最大,为(4.60±0.16) Pa;50 ℃下交联反应5 h,透明质酸钠凝胶的压缩应力达到最大,为(4.60±0.16) Pa。由此可以看出,交联温度对交联反应时间影响较大,交联反应温度越低、交联时间越长,透明质酸钠凝胶的压缩应力越大、有效交联度越大、交联凝胶越硬。37 ℃和50 ℃交联时透明质酸钠凝胶的硬度低、交联效率低,4 ℃交联反应时间较长,因此最佳的交联温度选择25 ℃。"
由表6可知,交联反应20 h和22 h,透明质酸钠凝胶压缩应力的t值分别为6.33,2.80,3.50和5.12,t值均大于t0.05(对给定的α=0.05,查自由度的t分布表,得t0.05=2.63,下同)[26],说明交联反应22 h凝胶的压缩应力与交联反应20 h凝胶的压缩应力有显著差异(α=0.05),表明交联反应20-22 h反应不够充分;交联反应22 h和24 h凝胶压缩应力的t值分别为1.50,1.79,1.09和2.11,t值均小于0.05,说明不同交联度凝胶在交联反应24 h时的压缩应力与交联反应22 h时的压缩应力无显著差异,表明交联反应22-24 h能够保证不同交联度透明质酸钠凝胶反应充分。 综合以上结果,选择透明质酸钠凝胶制备的工艺为:碱浓度为2%,透明质酸钠分子质量为700 kD,温度为25 ℃,交联度1%-4%,交联反应22-24 h,能够保证反应充分且不产生副反应效果。 2.3 不同方法表征交联反应进程对比分析结果 压缩应力和弹性模量均凝胶力学性质研究的重要手段,也是材料工程和生物医学领域研究的重要手段。压缩应力主要是法向压力,当受到法向压缩力时,凝胶内部的分子网络会受到压缩应力的作用,导致凝胶分子之间的距离减小,分子结构发生压缩变形,主要表征凝胶的强度和硬度。在应用中,凝胶的压缩应力与凝胶的类型、组成、浓度等因素密切相关。一些特殊的凝胶,如生物凝胶、化妆品中的凝胶等,在特定应用中可能需要对其压缩应力进行精确调控,以满足特定需求。 弹性模量又叫储存模量,是指凝胶在应变振幅扫描时所表现出的弹性特性,测定时主要是受到的横向力,通过振幅扫描可以确定样品内部结构的破坏情况以及样品的线性黏弹区范围,从而了解凝胶的弹性特性。这些数据可以帮助人们了解凝胶在实际应用中的性能表现,比如在医药领域中用于制备药物载体的凝胶材料的选择和设计;在生物医学领域,常常需要设计具有特定弹性特性的凝胶材料用于仿生组织工程或药物释放系统,而储存模量的数据可以帮助人们选择合适的材料并进行性能优化。 利用CORREL函数对将不同交联时间测定的透明质酸钠凝胶压缩应力与动力黏度和弹性模量的相关程度进行分析[22],见表7。在统计学中,相关性是指2个变量之间的关联程度,如果2个变量的值随着时间或其他因素的变化而变化,并且变化趋势相似,相关系数约接近于1,那么它们就具有较高的相关性;反之如果它们的变化趋势不一致,相关系数越接近于0,那么它们的相关性就较低[27-28]。由表7可知,透明质酸钠凝胶压缩应力与动力黏度和弹性模量的相关系数分别为0.963 0和0.973 3,说明随着交联时间的变化,凝胶的压缩应力、弹性模量和动力黏度变化趋势一致,均可以用来表征透明质酸钠凝胶的交联进程。"
2.4 压缩应力检测过程对透明质酸钠凝胶性能的影响 将交联过程中反复加压测定压缩应力的凝胶和未进行压缩应力测定凝胶制备成产品,然后分别测定凝胶产品的动力黏度和弹性模量,从而验证压缩应力的测定是否会对交联后产品的性能产生影响。 由表8可知,未检测压缩应力凝胶和检测压缩应力凝胶动力黏度和弹性模量的相对标准偏差分别为2.60%和3.15%,凝胶的性能无明显差异,外观上也没有明显区别,说明采用测定压缩应力来表征凝胶交联进程不会破坏样品和影响凝胶性能。另外,由表7可知,压缩应力、弹性模量和动力黏度均可以用来表征透明质酸钠凝胶的交联进程,但是动力黏度和弹性模量测定时需要将交联凝胶取出并稀释混合,需要破坏样品,操作过程复杂且耗时较长,在实际应用中不方便;压缩应力检测方法是在交联过程中直接将交联凝胶放在拉力机上进行测定(图2),能够进行实时、原位检测,具有不破坏样品、操作简单、耗时短等优点。但该方法也存在一定的局限性:在测定一些不规则材料的压缩应力时不适用,或者是随着下压的进行材料和夹具的接触面积可能会发生变化,导致压缩应力测定不准确。"
[1] 朱剑锋,徐小慧,施佳丽.交联透明质酸血管栓塞剂的制备及表征[J].高分子通报,2018(9):47-52. [2] RELLEVE LS, GALLARDO AKR, TECSON MG, et al. Biocompatible hydrogels of carboxymethyl hyaluronic acid prepared by radiation-induced crosslinking. Radiat Phys Chem. 2021;179:109194. [3] DING YW, WANG ZY, REN ZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci. 2022; 10(13):3393-3409. [4] LI C, CAO Z, LI W, et al. A review on the wide range applications of hyaluronic acid as a promising rejuvenating biomacromolecule in the treatments of bone related diseases. Int J Biol Macromol. 2020;165(Pt A):1264-1275. [5] TIAN G, SUN X, BAI J, et al. Doxorubicin-loaded dual-functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep. 2019; 19(1):133-142. [6] KIM H, JEONG H, HAN S, et al. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials. 2017;123:155-171. [7] 于浩,姜爱莉,李敏,等.《整形手术用交联透明质酸钠凝胶》标准中质量控制方法的研究进展[J].中国美容医学,2020,29(12):185-189. [8] 李红梅,张素文,郑春玲,等.注射用聚乳酸和交联透明质酸钠凝胶的制备及性能研究[J].生物医学工程研究,2016,35(3):202-204. [9] SARAVANAKUMAR K, PARK S, SANTOSH SS, et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol. 2022;222(Pt B):2744-2760. [10] KATOH S, YOSHIOKA H, SENTHILKUMAR R, et al. Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold. Knee. 2021;29:365-373. [11] 中国整形美容协会新技术与新材料分会.贝丽姿(R)-注射用交联透明质酸钠凝胶专家共识(2018)[J].中国美容医学,2019,28(6):73-77. [12] WENDE FJ, XUE Y, NESTOR G, et al. Relaxation and diffusion of water protons in BDDE cross-linked hyaluronic acid hydrogels investigated by NMR spectroscopy-Comparison with physicochemical properties. Carbohydr Polym. 2020;248(29):365-373. [13] FAIVRE J, PIGWEH AI, IEHL J, et al. Crosslinking hyaluronic acid soft-tissue fillers: current status and perspectives from an industrial point of view. Expert Rev Med Devices. 2021;18(12):1175-1187. [14] HINSENKAMP A, ÉZSIÁS B, PÁL É, et al. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng Part A. 2021;27(11-12):806-820. [15] GIUBERTONI G, PÉREZ DE ALBA ORTÍZ A, BANO F, et al. Strong Reduction of the Chain Rigidity of Hyaluronan by Selective Binding of Ca2+ Ions. Macromolecules. 2021;54(3):1137-1146. [16] KHUNMANEE S, JEONG Y, PARK H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8(2):204173141772646. [17] IACONISI GN, LUNETTI P, GALLO N, et al. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications-A Comprehensive Review. Int J Mol Sci. 2023;24(12):10296. [18] 王珏,胡丽,武美芹,等.NMR技术测定PVPP交联度及其粉体可压缩性研究[J].药学学报,2022,57(2):474-479. [19] 李利,黄光速.部分交联聚丙烯酰胺凝胶化反应中交联剂的影响[J].塑料工业,2013,41(3):35-39,71. [20] 张雪慧,王艳芹,郑强.仿生各向异性结构复合水凝胶及其流变学行为研究[J].高分子学报,2024-05-07.doi: 10.11777/j.issn1000-3304.2023.23275 [21] 沈煜年,覃宗喜.一种测定水凝胶软材料内部应力-应变场的方法:CN202210177194.7[P].CN202210177194.7[2024-04-12]. [22] 张泳柔.单轴荷载下PVA水凝胶力学行为的实验表征与模型研究[D].广州:华南理工大学,2024. [23] FIGUEIREDO T, JING J, JEACOMINE I, et al. Injectable Self-Healing Hydrogels Based on Boronate Ester Formation between Hyaluronic Acid Partners Modified with Benzoxaborin Derivatives and Saccharides. Biomacromolecules. 2020;21(1):230-239. [24] 陈倩倩,刘杰,张建强,等.交联玻璃酸钠凝胶的制备及流变学研究[J].中国药学杂志,2017,52(15):1342-1346. [25] 任秀,白继超,王亚萍,等. 6种克罗诺杆菌精准鉴定及标准物质的制备研究[J].食品安全质量检测学报,2021,12(17):6817-6825. [26] 陈钧,刘国荣,曾博,等.t检验和方差分析识别EMC测量系统间性能偏离[J].环境技术,2023,41(7):80-83. [27] 方忠俊,季蔚青,张婧娴,等.痛风性关节炎患者HLA-B*5801基因型携带率及相关实验室指标分析[J].检验医学,2021,36(9):896-900. [28] 康婕,陈鸿剑,李媛.羊乳制品中高氯酸盐污染来源分析[J].中国乳品工业,2024,52(4):45-49. [29] LUO Y, TAN J, ZHOU Y, et al. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol. 2023;231:123308. [30] WENDE FJ, GOHIL S, NORD LI, et al. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether. Int J Biol Macromol. 2019;131:812-820. [31] 张萍,刘月明.注射用透明质酸钠在面部轮廓修饰及年轻化中的应用[J].中国美容医学,2018,27(8):65-69. [32] HIROSE R, WATANABE N, NAITO Y, et al. Comparison of sodium alginate-based and sodium hyaluronate-based submucosal injection materials based on rheological analysis. J Mech Behav Biomed Mater. 2021;124:104816. [33] 张慧君,俞冰,牛峰,等.注射用透明质酸钠在面部美容外科中的应用观察[J].中华口腔医学杂志,2017,52(3):194-197. |
[1] | Liu Jianjian, Zhang Yan, Cui Zhiwei, Wang Dongfang, Liu Xu, Yang Shenglin, Chai Qian, Liu Fenglin. Isolation and protection of organs at risk by crosslinked sodium hyaluronate gel during brachytherapy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 700-706. |
[2] | Xu Lei, Han Xiaoqiang, Zhang Jintao, Sun Haibiao. Hyaluronic acid around articular chondrocytes: production, transformation and function characteristics [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(5): 768-773. |
[3] | Liu Gang, Gao Lilan, Shi Feifei, Wang Shixin, Luo Lailong, Li Ruixin, Zhang Chunqiu. Preparation and mechanical properties of collagen type II-silk fibroin-hyaluronic acid composite scaffold [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(28): 4519-4524. |
[4] | Le Guoping, Xi Licheng. Preparation and performance evaluation of composite tissue-engineered material hydrogel with sustained-release antibacterial microspheres [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(21): 3298-3305. |
[5] | Huang Dengcheng, Wang Zhike, Cao Xuewei. Comparison of the short-term efficacy of extracorporeal shock wave therapy for middle-aged and elderly knee osteoarthritis: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1471-1476. |
[6] | Cui Xiaoyan. Treatment of knee osteoarthritis with human umbilical cord-derived mesenchymal stem cells combined with sodium hyaluronate injection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(31): 4956-4963. |
[7] | Huang Linfeng, Gu Yingxuan, Quan Xiaoming, He Wei, Chen Leilei. Arthroscopic debridement combined with sodium hyaluronate injection for the treatment of senile knee osteoarthritis: a Meta-analysis of changes in pain, inflammatory factor, and joint function [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(26): 4249-4256. |
[8] | Yang Wei, Chen Zehua, Yi Zhiyong, Huang Xudong, Han Qingmin, Zhang Ronghua. Effectiveness of intra-articular injection of hyaluronic acid versus placebo in the treatment of early and mid-stage knee osteoarthritis: a Meta-analysis based on randomized, double-blind, controlled, clinical trials [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(23): 3760-3766. |
[9] | Li An’an, Chen Jiayun, Chen Jin, Song Min, Li Congcong, Ye Guozhu, Wu Gaoyi, Lin Wenzheng, Cai Yuning, Liu Wengang. Efficacy of arthroscopy combined with sodium hyaluronate for knee osteoarthritis: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(15): 2437-2444. |
[10] | Ma Zhigang, Guo Liping, Zhang Jianning, Li Yonggang. Changes in related factors in synovial fluid of osteoarthritis rabbits after treatment with different molecular weights of sodium hyaluronate injection [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(5): 694-698. |
[11] | Sun Renyi, Jia Tanghong. Intra-articular injection of hyaluronic acid versus platelet-rich plasma in the treatment of knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(14): 2164-2169. |
[12] | Jiang Jun, Ni Lei. Sodium hyaluronate injection immediately versus 2 weeks after arthroscopic debridement for knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(35): 6375-6380. |
[13] | Zhou Jing-hui, Wu Yao-chi, Xie Yan-yan, Zhang Jun-feng, Huang Cheng-fei, Sun Yi-jun. Effect and mechanism of acupuncture in the treatment of knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(28): 5255-5260. |
[14] | Lei Jing, Zhong Cui-hong, Chen Dan-chang, Huang Lei. Expression of rheumatoid factor and C-reactive protein during type Ⅱ collagen treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(11): 2007-2012. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||