Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (4): 678-685.doi: 10.12307/2025.264
Previous Articles Next Articles
Zhao Zengbo1, Li Chenxi2, Dou Chenlei2, Ma Na2, Zhou Guanjun2
Received:
2024-01-03
Accepted:
2024-02-29
Online:
2025-02-08
Published:
2024-05-29
Contact:
Zhou Guanjun, Master, Associate chief physician, Second Hospital, Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
About author:
Zhao Zengbo, Master, Associate chief physician, Stomatological Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
Supported by:
CLC Number:
Zhao Zengbo, Li Chenxi, Dou Chenlei, Ma Na, Zhou Guanjun. Anti-inflammatory and osteogenic effects of chitosan/sodium glycerophosphate/sodium alginate/leonurine hydrogel [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 678-685.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
5组之间AKT、PI3K、p65、IκBα的蛋白表达比较差异无显著性意义(P > 0.05),而p-AKT、p-PI3K、p-p65、p-IκBα的蛋白表达比较差异有显著性意义(P < 0.05):与空白组比较,脂多糖组p-AKT、p-PI3K、p-p65、p-IκBα的蛋白表达升高(P < 0.05);与脂多糖组比较,单独水凝胶组p-AKT、p-PI3K、p-p65、p-IκBα的蛋白表达未发生显著变化(P > 0.05),载药水凝胶组p-AKT、p-PI3K、p-p65、p-IκBα的蛋白表达降低(P < 0.05);与载药水凝胶组比较,抑制剂组p-AKT、p-PI3K、p-p65、p-IκBα的蛋白表达进一步降低(P < 0.05),见图5。"
空白组、单独水凝胶组、载药水凝胶组、抑制剂组碱性磷酸酶活性检测吸光度值分别为1.85±0.25,2.31±0.59,4.69±0.67,3.21±0.54,单独水凝胶组、载药水凝胶组、抑制剂组碱性磷酸酶活性均高于空白组(P < 0.05),载药水凝胶组碱性磷酸酶活性高于单独水凝胶组(P < 0.05),抑制剂组碱性磷酸酶活性小于载药水凝胶组(P < 0.05)。 qRT-PCR检测结果显示,与空白组比较,单独水凝胶组碱性磷酸酶、Runx2、骨钙素、Ⅰ型胶原的mRNA表达升高(P < 0.05);与单独水凝胶组比较,载药水凝胶组碱性磷酸酶、Runx2、骨钙素、Ⅰ型胶原的mRNA表达升高(P < 0.05);与载药水凝胶组比较,抑制剂组碱性磷酸酶、Runx2、骨钙素、Ⅰ型胶原的mRNA表达降低(P < 0.05),见图7。"
[1] HERRERA D, SANZ M, KEBSCHULL M, et al. Treatment of stage IV periodontitis: The EFP S3 level clinical practice guideline.J Clin Periodontol. 2022;49 Suppl 24:4-71. [2] DANNEWITZ B, HOLTFRETER B, EICKHOLZ P. [Periodontitis-therapy of a widespread disease].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021;64(8):931-940. [3] MARQUES ML, PEREIRA DA SILVA N, VAN DER HEIJDE D, et al. Inflammation, bone loss and 2-year bone formation at the same vertebra in axial spondyloarthritis: a multilevel MRI and low-dose CT analysis. RMD Open. 2023;9(1):e002836. [4] YERLIKAYA FH, ERYAVUZ ONMAZ D. Inflammation and Bone Turnover Markers in Adult Obesity. J Clin Densitom. 2022;25(4):470-474. [5] MA S, LU X, YU X, et al. An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. Biomater Adv. 2022;142:213158. [6] ZANG SQ, DONG GY, PENG B, et al. A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym. 2014;113: 240-248. [7] 吴爱君,陈乃清,黄丽华,等.益母草碱激活p62/Nrf2/HO-1信号通路抑制肾小管上皮细胞铁死亡的作用机制[J].中国中药杂志, 2023,48(8):2176-2183. [8] 薛丁嘉,李雪斐,丁晓丽,等.益母草碱抑制血管紧张素Ⅱ诱导心肌成纤维细胞增殖的作用与机制[J].中国新药与临床杂志,2022, 41(5): 301-306. [9] ZHAO B, PENG Q, POON EHL, et al. Leonurine Promotes the Osteoblast Differentiation of Rat BMSCs by Activation of Autophagy via the PI3K/Akt/mTOR Pathway. Front Bioeng Biotechnol. 2021;9:615191. [10] YIN W, LEI Y. Leonurine inhibits IL-1β induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol. 2018;65:50-59. [11] CHEN C, ZHU Z, HU N, et al. Leonurine Hydrochloride Suppresses Inflammatory Responses and Ameliorates Cartilage Degradation in Osteoarthritis via NF-κB Signaling Pathway.Inflammation. 2020;43(1): 146-154. [12] WANG R, PENG L, LV D, et al. Leonurine Attenuates Myocardial Fibrosis Through Upregulation of miR-29a-3p in Mice Post-myocardial Infarction. J Cardiovasc Pharmacol. 2021;77(2):189-199. [13] LI Z, CHEN K, ZHU YZ. Leonurine inhibits cardiomyocyte pyroptosis to attenuate cardiac fibrosis via the TGF-β/Smad2 signalling pathway. PLoS One. 2022;17(11):e0275258. [14] LIU Y, LI T, SUN M, et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022;146:37-48. [15] Chung CS, Wei YF, Lin LS. Submucosal Injection of Activated Platelet-Rich Plasma for Treatment of Periodontal Disease in Dogs. J Vet Dent. 2023;40(1):19-27. [16] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct Target Ther. 2021;6(1):426. [17] 李文化,赵冰可,王军泽,等.没食子酸改性壳聚糖水凝胶抑制细菌生物被膜及胞外多糖作用的评价[J].中国医药工业杂志,2023, 54(4):595-603 [18] 佟莹莹,金威洋,杨光华.水凝胶负载干细胞外泌体在组织再生领域的应用研究进展[J].生物工程学报,2023,39(4):1351-1362 [19] LIU X, PENG W, WANG Y, et al. Synthesis of an RGD-grafted oxidized sodium alginate-N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J Mater Chem B. 2013; 1(35):4484-4492. [20] SHI Z, YANG F, PANG Q, et al. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol. 2023;224: 533-543. [21] SUN M, CHENG L, XU Z, et al. Preparation and Characterization of Vancomycin Hydrochloride-Loaded Mesoporous Silica Composite Hydrogels. Front Bioeng Biotechnol. 2022;10:826971. [22] ALBARQI HA, ALQAHTANI AA, ULLAH I, et al. Microwave-Assisted Physically Cross-Linked Chitosan-Sodium Alginate Hydrogel Membrane Doped with Curcumin as a Novel Wound Healing Platform. AAPS PharmSciTech. 2022;23(2):72. [23] PUSSINEN PJ, KOPRA E, PIETIÄINEN M, et al. Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontol 2000. 2022;89(1):19-40. [24] HAN Y, HUANG Y, GAO P, et al. Leptin Aggravates Periodontitis by Promoting M1 Polarization via NLRP3.J Dent Res. 2022;101(6):675-685. [25] YANG WY, MENG X, WANG YR, et al. PRDX6 alleviates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis. Acta Odontol Scand. 2022;80(7):535-546. [26] SUN D, XU W, LIANG C, et al. Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation. ACS Sens. 2020;5(6):1758-1767. [27] BENDRE A, BÜKI KG, MÄÄTTÄ JA. Fam3c modulates osteogenic differentiation by down-regulating Runx2. Differentiation. 2017;93: 50-57. [28] LIU Z, YANG J. Uncarboxylated osteocalcin promotes osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by activating the Erk-Smad/β-catenin signalling pathways. Cell Biochem Funct. 2020;38(1):87-96. [29] AKHIR HM, TEOH PL. Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci Rep. 2020;40(12): BSR20201325. [30] ZHANG L, LI HX, PAN WS, et al. Novel hepatoprotective role of Leonurine hydrochloride against experimental non-alcoholic steatohepatitis mediated via AMPK/SREBP1 signaling pathway. Biomed Pharmacother. 2019;110:571-581. [31] WANG R, LI D, OUYANG J, et al. Leonurine alleviates LPS-induced myocarditis through suppressing the NF-small ka, CyrillicB signaling pathway. Toxicology. 2019;422:1-13. [32] SHEN S, WU G, LUO W, et al. Leonurine attenuates angiotensin II-induced cardiac injury and dysfunction via inhibiting MAPK and NF-κB pathway. Phytomedicine. 2023;108:154519. [33] HE X, LI Y, DENG B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022;55(9):e13275. [34] LI ST, DAI Q, ZHANG SX, et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin. 2018;39(8):1294-1304. [35] XIE Y, SHI X, SHENG K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2019; 19(2):783-791. |
[1] | Dong Meilin, Du Haiyu, Liu Yuan. Quercetin-loaded carboxymethyl chitosan hydrogel promotes wound healing in diabetic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 692-699. |
[2] |
Zhang Bo, Zhang Zhen, Jiang Dong.
Tannic acid modified interpenetrating network hydrogel promotes tissue remodeling of ruptured Achilles tendon after surgery#br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 721-729.
|
[3] | Zhao Hongxia, Sun Zhengwei, Han Yang, Wu Xuechao , Han Jing. Osteogenic properties of platelet-rich fibrin combined with gelatin methacryloyl hydrogel [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 809-817. |
[4] | Cheng Xinqi, Shao Longhui, Shen Huaqiao, Liu Hongwei. Osteogenic and antibacterial effects of titanium alloy modified with copper-strontium binary doped calcium silicate coating [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(22): 4639-4646. |
[5] | Wang Renzhi, Chen Yuanfen, Li Jinwei. 3D printed hollow pipe double-crosslinked hydrogel tissue engineering scaffold [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3432-3439. |
[6] | He Rui, Li Chongyi, Wang Ruiyao, Zeng Dan, Fan Daidi. Application of MXene-based hydrogels in wound repair [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3486-3493. |
[7] | Dumanbieke·Amantai, He Huiyu, Han Xiangzhen. Hydroxyapatite-graphene oxide composite coating promotes bone defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(10): 2030-2037. |
[8] | Liu Zhongyu, Li Wenya, Fan Yonghong, Lyu Shuang, Pei Juan, Chen Yaqin, Liu Beiyu, Sun Hongyu. Methacrylated dermal extracellular matrix hydrogel promotes repair of abdominal wall defects [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(10): 2074-2082. |
[9] | Xiao Hui, Li Dongyan, Ji Jing, Wang Lizhen. Action mechanisms and application pathways of biomaterials in promoting corneal alkali burn repair [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(10): 2162-2170. |
[10] | Zhao Wenqi, Yu Haichi, Song Yiru, Yuan Tianyang, Liu Qinyi. Platelet-rich plasma and hydrogel for spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(10): 2189-2200. |
[11] | Cui Xintao, Zhang Zhenyu. Physical factors and mechanisms affecting osteogenic ability of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5064-5070. |
[12] | Zhang Shuang, Xu Xiaomei, Zeng Yang, Yuan Xiaoping, Lin Fuwei. Rev-erbα’s effect on osteoblastogenesis of mouse bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 4921-4926. |
[13] | Chen Jia, Yang Yiqiang, Hu Chen, Chen Qi, Zhao Tian, Yong Min, Ma Dongyang, Ren Liling. Fabrication of prevascularized osteogenic differentiated cell sheet based on human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 4934-4940. |
[14] |
Feng Yuan, Han Zhiqi, Zhou Nuo.
Endothelial progenitor cells promote vasculogenesis and osteogenesis in the repair of bone defects [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4046-4053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||