Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (2): 221-230.doi: 10.12307/2025.211
Fu Changxi1 , He Ruibo2 , Ma Gang2 , Zhu Zheng1 , Ma Wenchao1
Received:
2023-12-28
Accepted:
2024-02-08
Online:
2025-01-18
Published:
2024-05-23
Contact:
Fu Changxi, Department of Physical Education, Xuzhou University of Technology, Xuzhou 221008, Jiangsu Province, China
About author:
Fu Changxi, PhD candidate, Associate professor, Department of Physical Education, Xuzhou University of Technology, Xuzhou 221008, Jiangsu Province, China
Supported by:
CLC Number:
Fu Changxi, He Ruibo, Ma Gang, Zhu Zheng, Ma Wenchao.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 样本量分析 实验期间由于模型制作失败、死亡、未完成训练方案等原因,共19只动物脱落,最终纳入统计分析的样本量为41只,其中假手术组15只、心肌梗死组9只、有氧运动组8只、抗阻运动组9只。 2.2 各组大鼠运动能力比较 干预前:与假手术组比较,心肌梗死组、有氧运动组、抗阻运动组最高跑速和最大负重均下降(P < 0.05)。干预后:与干预前比较,假手术组最高跑速和最大负重下降(P < 0.05),有氧运动组最高跑速以及抗阻运动组最大负重升高(P < 0.05);与假手术组比较,心肌梗死组最高跑速和最大负重下降(P < 0.05);与心肌梗死组比较,有氧运动组最高跑速以及抗阻运动组最大负重增加(P < 0.05);与有氧运动组比较,抗阻运动组最高跑速下降(P < 0.05),最大负重升高(P < 0.05),见表1。"
2.4 各组大鼠超声心动参数比较 干预前和干预后,与假手术组比较,心肌梗死组左心室舒张期直径、左心室收缩期直径、左心室舒张期后壁厚度、梗死面积升高(P < 0.05),左心室射血分数和左心室缩短分数下降(P < 0.05);与心肌梗死组比较,有氧运动组和抗阻运动组上述各指标均无统计学差异(P > 0.05),见表3和表4。 2.5 各组大鼠心肌组织形态学观察 心肌苏木精-伊红染色:胞浆呈红色,细胞核呈蓝色。假手术组心肌细胞排列整齐有序,心肌梗死组、有氧运动组和抗阻运动组均出现心肌肥大,见图2A。与假手术组比较,心肌梗死组、有氧运动组和抗阻运动组心肌细胞横截面积均升高 (P < 0.05),与心肌梗死组比较,有氧运动组和抗阻运动组心肌细胞横截面积无统计学差异(P > 0.05),见图2B。"
心肌天狼星红染色:胶原纤维呈红色,肌纤维呈黄色。假手术组心肌间质均存在极少量胶原纤维,心肌梗死组、有氧运动组和抗阻运动组胶原纤维明显增加,见图2C。与假手术组比较,心肌梗死组、有氧运动组和抗阻运动组心肌胶原含量均升高(P < 0.05),与心肌梗死组比较,有氧运动组和抗阻运动组心肌胶原含量无统计学差异(P > 0.05),见图2D。 2.6 各组大鼠腓肠肌组织形态学观察与比较 腓肠肌ATP酶染色显示,Ⅰ型肌纤维呈深蓝色,Ⅱ型肌纤维呈浅蓝色,见图3A。与假手术组比较,心肌梗死组和有氧运动组腓肠肌细胞横截面积下降(P < 0.05),抗阻运动组腓肠肌细胞横截面积升高(P < 0.05),与心肌梗死组和有氧运动组比较,抗阻运动组腓肠肌细胞横截面积升高(P < 0.05),见图3B。各组间肌纤维分布与比例无统计学差异 (P > 0.05),见图3C。 2.7 各组大鼠腓肠肌氧化应激标志物比较 在超氧化物存在时,二氢乙锭转化为氧化乙锭,后者可掺入染色体DNA中产生红色荧光,见图4A,红色荧光强度与活性氧水平呈正比。与假手术组比较,心肌梗死组活性氧水平显著升高(P < 0.05);与心肌梗死组比较,有氧运动组和抗阻运动组活性氧水平下降(P < 0.05);与抗阻运动组比较,有氧运动组活性氧水平下降(P < 0.05),见图4B。 与假手术组比较,心肌梗死组丙二醛含量、过氧化 "
氢酶活性升高(P < 0.05),超氧化物歧化酶活性、谷胱甘肽过氧化物酶活性降低(P < 0.05);与心肌梗死组比较,有氧运动组丙二醛含量下降(P < 0.05),超氧化物歧化酶活性、谷胱甘肽过氧化物酶活性升高(P < 0.05),抗阻运动组丙二醛含量、谷胱甘肽过氧化物酶活性无统计学差异(P > 0.05),超氧化物歧化酶活性升高(P < 0.05),两运动组过氧化氢酶活性无统计学差异(P > 0.05);与有氧运动组比较,抗阻运动组丙二醛含量升高(P < 0.05),超氧化物歧化酶活性、谷胱甘肽过氧化物酶活性下降(P < 0.05),见图4C-F。 2.8 各组腓肠肌泛素-蛋白酶体系统蛋白表达量比较 与假手术组比较,心肌梗死组泛素、MuRF1、MAFbx蛋白表达量上调(P < 0.05);与心肌梗死组比较,有氧运动"
[1] MURPHY A, GOLDBERG S. Mechanical Complications of Myocardial Infarction. Am J Med. 2022;135(12):1401-1409. [2] LATASA AÍ, RAMíREZ-VÉLEZ R, IZQUIERDO M, et al. Heart failure-related skeletal myopathy. Potential involvement of myokines. Rev Esp Cardiol (Engl Ed). 2021;74(12):1008-1012. [3] FUENTES E, MOORE-CARRASCO R, DE ANDRADE PAES AM, et al. Role of Platelet Activation and Oxidative Stress in the Evolution of Myocardial Infarction. J Cardiovasc Pharmacol Ther. 2019;24(6):509-520. [4] NERI M, FINESCHI V, DI PAOLO M, et al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol. 2015;13(1):26-36. [5] QIU M, CHEN J, LI X, et al. Intersection of the Ubiquitin-Proteasome System with Oxidative Stress in Cardiovascular Disease. Int J Mol Sci. 2022;23(20):12197. [6] CAIOZZO VJ, GIEDZINSKI E, BAKER M, et al. The radiosensitivity of satellite cells: cell cycle regulation, apoptosis and oxidative stress. Radiat Res. 2010;174(5):582-589. [7] PATTI A, MERLO L, AMBROSETTI M, et al. Exercise-Based Cardiac Rehabilitation Programs in Heart Failure Patients. Heart Fail Clin. 2021;17(2):263-271. [8] BRUM PC, BACURAU AV, CUNHA TF, et al. Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol. 2014;99(4): 616-620. [9] NEGRAO CE, MIDDLEKAUFF HR, GOMES-SANTOS IL, et al. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol. 2015;308(8): H792-802. [10] TZANIS G, PHILIPPOU A, KARATZANOS E, et al. Effects of High-Intensity Interval Exercise Training on Skeletal Myopathy of Chronic Heart Failure. J Card Fail. 2017;23(1):36-46. [11] 许纲.心力衰竭患者的骨骼肌肌病与抗阻运动锻炼[J].中国康复医学杂志,2010,25(7):716-720. [12] FISHER S, SMART NA, PEARSON MJ. Resistance training in heart failure patients: a systematic review and meta-analysis. Heart Fail Rev. 2022;27(5):1665-1682. [13] HSU WB, LIN SJ, HUNG JS, et al. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res. 2022;11(2):121-133. [14] GOMES MJ, MARTINEZ PF, PAGAN LU, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428-20440. [15] MARTINEZ PF, OKOSHI K, ZORNOFF LA, et al. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol (1985). 2011;111(2):543-551. [16] LIMA AR, MARTINEZ PF, DAMATTO RL, et al. Heart failure-induced diaphragm myopathy. Cell Physiol Biochem. 2014;34(2):333-345. [17] 张艳,何瑞波,王庆博,等.不同负荷量有氧运动对肥胖大鼠骨骼肌炎症反应和胰岛素信号途径的影响及机制[J].中国组织工程研究,2023,27(8):1237-1244. [18] IKEDO A, KIDO K, ATO S, et al. The effects of resistance training on bone mineral density and bone quality in type 2 diabetic rats. Physiol Rep. 2019;7(6):e14046. [19] TANG L, ZHAO T, KANG Y, et al. MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats. J Physiol Biochem. 2022;78(1):61-72. [20] DE SOUSA NETO IV, DURIGAN JLQ, CARREIRO DE FARIAS JUNIOR G, et al. Resistance Training Modulates the Matrix Metalloproteinase-2 Activity in Different Trabecular Bones in Aged Rats. Clin Interv Aging. 2021;16:71-81. [21] RIVERA-BROWN AM, FRONTERA WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R. 2012;4(11):797-804. [22] RIEHLE C, BAUERSACHS J. Small animal models of heart failure. Cardiovasc Res. 2019;115(13):1838-1849. [23] SOUZA LM, OKOSHI MP, GOMES MJ, et al. Effects of late aerobic exercise on cardiac remodeling of rats with small-sized myocardial infarction. Arq Bras Cardiol. 2021;116(4):784-792. [24] SYLVIANA N, GOENAWAN H, SUSANTI Y, et al. Effect of different intensities aerobic exercise to cardiac angiogenesis regulation on wistar rats. Pol J Vet Sci. 2022;25(1):119-128. [25] PAGAN LU, DAMATTO RL, GOMES MJ, et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med. 2019;23(9):6504-6507. [26] GRANS CF, FERIANI DJ, ABSSAMRA ME, et al. Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol. 2014;103(1):60-68. [27] CAI M, WANG Q, LIU Z, et al. Effects of different types of exercise on skeletal muscle atrophy, antioxidant capacity and growth factors expression following myocardial infarction. Life Sci. 2018;213:40-49. [28] LEE AP, ICE R, BLESSEY R, et al. Long-term effects of physical training on coronary patients with impaired ventricular function. Circulation. 1979;60(7):1519-1526. [29] CONN EH, WILLIAMS RS, WALLACE AG. Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am J Cardiol. 1982;49(2):296-300. [30] METTAUER B, ZOLL J, GARNIER A, et al. Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch. 2006;452(6): 653-666. [31] SCHIAFFINO S, REGGIANI C, MURGIA M. Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histol Histopathol. 2020;35(3):239-246. [32] SEILER M, BOWEN TS, ROLIM N, et al. Skeletal Muscle Alterations Are Exacerbated in Heart Failure With Reduced Compared With Preserved Ejection Fraction: Mediated by Circulating Cytokines. Circ Heart Fail. 2016;9(9):e3027. [33] 杨立坤,傅力,牛燕媚.泛素-蛋白酶体在运动调节骨骼肌代谢中的作用研究进展[J].中国运动医学杂志,2018,37(10):865-868. [34] BODINE SC, BAEHR LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469-484. [35] FOLETTA VC, WHITE LJ, LARSEN AE, et al. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461(3):325-335. [36] 陈彩珍,卢健,季浏.不同运动方式对小鼠骨骼肌肌萎缩相关因子表达的影响[J].沈阳体育学院学报,2014,33(5):85-89. [37] FINK J, SCHOENFELD BJ, NAKAZATO K. The role of hormones in muscle hypertrophy. Phys Sportsmed. 2018;46(1):129-134. [38] ABREU P, KOWALTOWSKI AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle. 2020;11(6):1661-1676. [39] KARIMI MAJD S, GHOLAMI M, BAZGIR B. PAX7 and MyoD Proteins Expression in Response to Eccentric and Concentric Resistance Exercise in Active Young Men. Cell J. 2023;25(2):135-142. [40] CHODKOWSKA KA, CIECIERSKA A, MAJCHRZAK K, et al. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide. Genes Nutr. 2018;13:e10. |
[1] | Li Kaiying, Wei Xiaoge, Song Fei, Yang Nan, Zhao Zhenning, Wang Yan, Mu Jing, Ma Huisheng. Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1600-1608. |
[2] | Li Huayuan, Li Chun, Liu Junwei, Wang Ting, Li Long, Wu Yongli. Effect of warm acupuncture on PINK1/Parkin pathway in the skeletal muscle of rats with chronic fatigue syndrome [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1618-1625. |
[3] | Wang Xuanqiang, Zhang Wenyang, Li Yang, Kong Weiqian, Li Wei, Wang Le, Li Zhongshan, Bai Shi. Effects of chronic exposure to low-frequency pulsed magnetic fields on contractility and morphology of the quadriceps muscle in healthy adults [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1634-1642. |
[4] | Zhang Zixian, Xu Youliang, Wu Shaokui, Wang Xiangying. Effects of blood flow restriction training combined with resistance training on muscle indicators in college athletes: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1705-1713. |
[5] | Zheng Huakun, Yin Mingyue, Liu Qian. Effects of interval and continuous training on the quality of life in physically inactive adults: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1727-1740. |
[6] | Lou Guo, Zhang Min, Fu Changxi. Exercise preconditioning for eight weeks enhances therapeutic effect of adipose-derived stem cells in rats with myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1363-1370. |
[7] | Wan Lingling, Wu Mengying, Zhang Yujiao, Luo Qingqing. Inflammatory factor interferon-gamma affects migration and apoptosis of human vascular smooth muscle cells through pyroptosis pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1422-1428. |
[8] | Gao Yang, Qin Hewei, Liu Dandan. ACSL4 mediates ferroptosis and its potential role in atherosclerotic cardiovascular disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1239-1247. |
[9] | Zhang Wenhua, Li Xun, Zhang Weichao, Li Xinying, Ma Guoao, Wang Xiaoqiang . Promoting myogenesis based on the SphK1/S1P/S1PR2 signaling pathway: a new perspective on improving skeletal muscle health through exercise [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1265-1275. |
[10] |
Sun Guanghan, Xie Zhencong, Sun Mi, Xu Yang, Guo Dong.
Therapeutic effect and mechanism by which Trichosanthis Fructus-Allii Macrostemonis Bulbus regulates gut microbiota in a rat model of coronary heart disease #br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 917-927.
|
[11] | Wu Yihan, Liu Zhongqiang, Wei Qiaoye, Liu Mingdong, Chen Keyi, Li Zhigang. Effect of balance training with different visual conditions on proprioception in patients with chronic ankle instability [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1050-1057. |
[12] | Wen Zixing, Xu Xin, Zhu Shengqun. Correlations between gastrocnemius morphology parameters and physical activity capacity in elderly females under high-frequency ultrasound [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1058-1063. |
[13] |
Zhang Bo, Zhang Zhen, Jiang Dong.
Tannic acid modified interpenetrating network hydrogel promotes tissue remodeling of ruptured Achilles tendon after surgery#br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 721-729.
|
[14] | Yang Dingyan, Yu Zhenqiu, Yang Zhongyu. Machine learning-based analysis of neutrophil-associated potential biomarkers for acute myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7909-7920. |
[15] | Cai Zhixing, Xia Qiufang, Chen Lili, Zhu Danyang, Zhu Huiwen, Sun Yanan, Liang Wenyu, Zhao Heqian. Effect of Roujishuncuiyin on the improvement of skeletal muscle insulin resistance in a mouse model of type 2 diabetes mellitus [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7537-7543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||