Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (25): 4027-4032.doi: 10.3969/j.issn.2095-4344.2015.25.018
Previous Articles Next Articles
Zhang Dan1, Ren Ling2, Yang Ke2, Zhang Yang1, Xue Nan1, Guo Yan3
Online:
2015-06-18
Published:
2015-06-18
Contact:
Zhang Yang, Professor, Chief physician, Department of Orthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110002, Liaoning Province, China
About author:
Zhang Dan, M.D., Associate professor, Associate chief physician, Department of Orthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110002, Liaoning Province, China
Supported by:
the Science and Technology Plan of Liaoning Science and Technology Department, No. 2010225025; the Science and Technology Plan of Shenyang, No. F11-262-9-35
CLC Number:
Zhang Dan, Ren Ling, Yang Ke, Zhang Yang, Xue Nan, Guo Yan. Antibacterial activity of Cu ions released from 316L-Cu antibacterial stainless steel[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(25): 4027-4032.
[1] Cho YM, Cha JY, Hwang CJ. The effect of rotation moment on the stability of immediately loaded orthodontic miniscrews: a pilot study. Eur J Orthod. 2010;32(6):614-619. [2] Ma J, Wang L, Zhang W, et al. Comparative evaluation of micro-implant and headgear anchorage used with a pre-adjusted appliance system. Eur J Orthod. 2008;30(3): 283-287. [3] 张扬.正畸治疗中支抗的控制与临床应用[J].中国实用口腔科杂志,2008,1(4):208 -211. [4] 李晋芳.微型种植体支抗推磨牙向远中矫治安氏Ⅱ类1分类牙列非拔牙病例的临床分析[J].山西医科大学学报,2010,41(12): 1084. [5] Oh YH, Park HS, Kwon TG. Treatment effects of microimplant-aided sliding mechanics on distal retraction of posterior teeth. Am J Orthod Dentofacial Orthop. 2011;139(4): 470-481. [6] 高丽梅,武冠英.微螺钉种植体支抗推磨牙向后的临床研究[J].北京口腔医学,2012,20(2): 94. [7] Chen M, Li ZM, Liu X, et al. Differences of treatment outcomes between self-ligating brackets with microimplant and headgear anchorages in adults with bimaxillary protrusion. Am J Orthod Dentofacial Orthop. 2015;147(4): 465-471. [8] Lindsay D, von Holy A. Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect. 2006;64(4):313-325. [9] Lee TC, McGrath CP, Wong RW, et al. Patients' perceptions regarding microimplant as anchorage in orthodontics. Angle Orthod. 2008;78(2):228-233. [10] Hu Y, Zheng LL, Tang T, et al. Influence of the peri-implantitis to the microscrew-bone interface. Hua Xi Kou Qiang Yi Xue Za Zhi. 2011;29(1):17-20, 26. [11] Ferreira SD, Silva GL, Cortelli JR, et al. Prevalence and risk variables for peri-implant disease in Brazilian subjects. J Clin Periodontol. 2006;33(12):929-935. [12] Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol. 2008;35(8 Suppl):292-304. [13] 陈城,张晓蓉.影响微种植体支抗稳定性的因素[J].中国实用口腔科杂志,2009,2(5):309-311. [14] do Nascimento C, Monesi N, Ito IY, et al. Bacterial diversity of periodontal and implant-related sites detected by the DNA Checkerboard method. Eur J Clin Microbiol Infect Dis. 2011; 30(12):1607-1613. [15] Kumar PS, Mason MR, Brooker MR, et al. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012;39(5): 425-433. [16] 马丽辉,李嫕婧,林继成,等.微种植支抗钉失败的相关因素分析[J].临床口腔医学杂志,2015,31(1):27. [17] 张丹,任玲,杨柯,等.新型304-Cu抗菌矫治器的细胞毒性[J].中国组织工程研究,2012,16(25):4622-4626. [18] 张丹,张扬,卢利,等.新型抗菌不锈钢微螺钉种植体的细胞毒性分析[J].中国组织工程与临床康复,2010,14(16):2916-2920. [19] Chai H, Guo L, Wang X, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci Mater Med. 2011;22(11):2525-2535. [20] Chung K, Kim SH, Kook Y. C-orthodontic microimplant for distalization of mandibular dentition in Class III correction. Angle Orthod. 2005;75(1):119-128. [21] Gandolfi MG, Taddei P, Siboni F, et al. Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF). Microsc Microanal. 2015;21(1): 190-203. [22] Ren L, Xu L, Feng J, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci Mater Med. 2012;23(5):1235-1245. [23] Chen M, Li ZM, Liu X, et al. Differences of treatment outcomes between self-ligating brackets with microimplant and headgear anchorages in adults with bimaxillary protrusion. Am J Orthod Dentofacial Orthop. 2015;147(4): 465-471. [24] Romero-Maroto M, Santos-Puerta N, González Olmo MJ, et al. The impact of dental appearance and anxiety on self-esteem in adult orthodontic patients. Orthod Craniofac Res.2015. in press. [25] Tang X, Cai J, Lin B, et al. Motivation of adult female patients seeking orthodontic treatment: an application of Q-methodology. Patient Prefer Adherence. 2015;9: 249-256. [26] 26 Christensen L, Luther F. Adults seeking orthodontic treatment: expectations, periodontal and TMD issues. Br Dent J. 2015;218(3):111-117. [27] 历松,周洁珉,任超超,成人正畸治疗技术的发展与挑战,华西口腔医学杂志,2013,31(6):549-551. [28] 李盛楠,张丁.成人正畸治疗新进展[J].中国医学科学院学报, 2014,36(6):675. [29] Soh J, Sandham A. Orthodontic treatment need in Asian adult males. Angle Orthod. 2004;74(6):769-773. [30] Melo AC, Jawonski ME, Largura LZ, et al. Upper molar intrusion in rehabilitation patients with the aid of microscrews. Aust Orthod J. 2008;24(1):50-53. [31] Ouyang L, Zhou YH, Fu MK, et al. Extraction treatment of an adult patient with severe bimaxillary dentoalveolar protrusion using microscrew anchorage. Chin Med J (Engl). 2007;120(19):1732-1736. [32] Xun C, Zeng X, Wang X. Microscrew anchorage in skeletal anterior open-bite treatment. Angle Orthod. 2007;77(1): 47-56. [33] Zeiger M, Solioz M, Edongué H, et al. Surface structure influences contact killing of bacteria by copper. Microbiologyopen. 2014;3(3):327-332. [34] 许衍,兰庭超,潘永初,等.微种植体支抗远中移动下颌牙列的临床体会[J].口腔医学,2015,35(2):108-111. [35] Park HS, Lee SK, Kwon OW. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod. 2005; 75(4): 602-609. [36] Dobranszki A, Faber J, Scatolino IV, et al. Analysis of factors associated with orthodontic microscrew failure. Braz Dent J. 2014;25(4):346-351. [37] Nan L, Yang K, Ren G. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl. 2015;51:356-361. [38] Ibrahim M, Wang F, Lou MM, et al. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria. J Biosci Bioeng. 2011;112(6): 570-576. [39] Peña MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr. 1999 ;129(7): 1251-1260. [40] Sagripanti JL, Goering PL, Lamanna A. Interaction of copper with DNA and antagonism by other metals. Toxicol Appl Pharmacol. 1991;110(3):477-485. [41] Faúndez G, Troncoso M, Navarrete P, et al. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004; 4: 19. [42] Hart EB, Steenbock H, Waddell J, et al. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. 1928. J Biol Chem. 2002;277(34):e22. [43] Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis. 1997;133(2):139-152. [44] Fraga CG. Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med. 2005;26(4-5): 235-244. [45] Ong CT, Ivanovski S, Needleman IG, et al. Systematic review of implant outcomes in treated periodontitis subjects. J Clin Periodontol. 2008;35(5):438-462. [46] Fürst MM, Salvi GE, Lang NP, et al. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res. 2007;18(4):501-508. [47] Kocar M, Seme K, Hren NI. Characterization of the normal bacterial flora in peri-implant sulci of partially and completely edentulous patients. Int J Oral Maxillofac Implants. 2010; 25(4):690-698. [48] Salvi GE, Aglietta M, Eick S, et al. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin Oral Implants Res. 2012;23(2):182-190. [49] 沈意涵,邹多宏,吴轶群.牙种植体周围炎相关因素和治疗新进展[J].上海口腔医学,2014,23(6):763. [50] Ata-Ali J, Flichy-Fernandez AJ, Ata-Ali F, et al. Clinical, microbiologic, and host response characteristics in patients with peri-implant mucositis. Int J Oral Maxillofac Implants. 2013;28(3):883-890. [51] Salvi GE, Franco LM, Braun TM, et al. Pro-inflammatory biomarkers during experimental gingivitis in patients with type 1 diabetes mellitus: a proof-of-concept study. J Clin Periodontol. 2010;37(1):9-16. [52] Heuer W, Kettenring A, Stumpp SN, et al. Metagenomic analysis of the peri-implant and periodontal microflora in patients with clinical signs of gingivitis or mucositis. Clin Oral Investig. 2012;16(3):843-850. [53] 陈一,陈新,钟科,等.健康种植体周围龈下微生物多样性研究[J].西部医学,2015,27(2):240. [54] Nan L, Yang K, Ren G. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl. 2015;51:356-361. [55] Nan L, Xu D, Gu T, et al. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Mater Sci Eng C Mater Biol Appl. 2015;48: 228-234. [56] Bae YM, Baek SY, Lee SY. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol. 2012;153(3):465-473. [57] Ait Ouali F, Al Kassaa I, Cudennec B, et al. Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int J Food Microbiol. 2014;191:116-124. [58] Abdallah M, Chataigne G, Ferreira-Theret P, et al. Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Appl Microbiol Biotechnol. 2014;98(6):2597-2607. [59] Giaouris E, Chorianopoulos N, Nychas GJ. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot. 2005;68(10): 2149-2154. [60] Rivas L, Dykes GA, Fegan N. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method. J Microbiol Methods. 2007;69(1): 44-51. [61] Laird K, Armitage D, Phillips C. Reduction of surface contamination and biofilms of Enterococcus sp. and Staphylococcus aureus using a citrus-based vapour. J Hosp Infect. 2012;80(1):61-66. [62] Sauer K, Steczko J, Ash SR. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. J Antimicrob Chemother. 2009;63(5):937-945. [63] Giaouris ED, Nychas GJ. The adherence of Salmonella Enteritidis PT4 to stainless steel: the importance of the air-liquid interface and nutrient availability. Food Microbiol. 2006;23(8):747-752. [64] Zeiger M, Solioz M, Edongué H, et al. Surface structure influences contact killing of bacteria by copper. Microbiologyopen. 2014;3(3):327-332. |
[1] | Chen Ziyang, Pu Rui, Deng Shuang, Yuan Lingyan. Regulatory effect of exosomes on exercise-mediated insulin resistance diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 4089-4094. |
[2] | Chen Yang, Huang Denggao, Gao Yuanhui, Wang Shunlan, Cao Hui, Zheng Linlin, He Haowei, Luo Siqin, Xiao Jingchuan, Zhang Yingai, Zhang Shufang. Low-intensity pulsed ultrasound promotes the proliferation and adhesion of human adipose-derived mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3949-3955. |
[3] | Yang Junhui, Luo Jinli, Yuan Xiaoping. Effects of human growth hormone on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3956-3961. |
[4] | Sun Jianwei, Yang Xinming, Zhang Ying. Effect of montelukast combined with bone marrow mesenchymal stem cell transplantation on spinal cord injury in rat models [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3962-3969. |
[5] | Gao Shan, Huang Dongjing, Hong Haiman, Jia Jingqiao, Meng Fei. Comparison on the curative effect of human placenta-derived mesenchymal stem cells and induced islet-like cells in gestational diabetes mellitus rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3981-3987. |
[6] | Hao Xiaona, Zhang Yingjie, Li Yuyun, Xu Tao. Bone marrow mesenchymal stem cells overexpressing prolyl oligopeptidase on the repair of liver fibrosis in rat models [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3988-3993. |
[7] | Liu Jianyou, Jia Zhongwei, Niu Jiawei, Cao Xinjie, Zhang Dong, Wei Jie. A new method for measuring the anteversion angle of the femoral neck by constructing the three-dimensional digital model of the femur [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3779-3783. |
[8] | Meng Lingjie, Qian Hui, Sheng Xiaolei, Lu Jianfeng, Huang Jianping, Qi Liangang, Liu Zongbao. Application of three-dimensional printing technology combined with bone cement in minimally invasive treatment of the collapsed Sanders III type of calcaneal fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3784-3789. |
[9] | Qian Xuankun, Huang Hefei, Wu Chengcong, Liu Keting, Ou Hua, Zhang Jinpeng, Ren Jing, Wan Jianshan. Computer-assisted navigation combined with minimally invasive transforaminal lumbar interbody fusion for lumbar spondylolisthesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3790-3795. |
[10] | Hu Jing, Xiang Yang, Ye Chuan, Han Ziji. Three-dimensional printing assisted screw placement and freehand pedicle screw fixation in the treatment of thoracolumbar fractures: 1-year follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3804-3809. |
[11] | Shu Qihang, Liao Yijia, Xue Jingbo, Yan Yiguo, Wang Cheng. Three-dimensional finite element analysis of a new three-dimensional printed porous fusion cage for cervical vertebra [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3810-3815. |
[12] | Wang Yihan, Li Yang, Zhang Ling, Zhang Rui, Xu Ruida, Han Xiaofeng, Cheng Guangqi, Wang Weil. Application of three-dimensional visualization technology for digital orthopedics in the reduction and fixation of intertrochanteric fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3816-3820. |
[13] | Sun Maji, Wang Qiuan, Zhang Xingchen, Guo Chong, Yuan Feng, Guo Kaijin. Development and biomechanical analysis of a new anterior cervical pedicle screw fixation system [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3821-3825. |
[14] | Lin Wang, Wang Yingying, Guo Weizhong, Yuan Cuihua, Xu Shenggui, Zhang Shenshen, Lin Chengshou. Adopting expanded lateral approach to enhance the mechanical stability and knee function for treating posterolateral column fracture of tibial plateau [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3826-3827. |
[15] | Zhu Yun, Chen Yu, Qiu Hao, Liu Dun, Jin Guorong, Chen Shimou, Weng Zheng. Finite element analysis for treatment of osteoporotic femoral fracture with far cortical locking screw [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3832-3837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||