Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (36): 7856-7862.doi: 10.12307/2025.748
Previous Articles Next Articles
Liu Lu1, Zhong Chang2, Yu Xin2, Ren Chenyuan2, Gong Yangyang2, Zhou Ping2, Wang Yingbin1
Received:
2024-08-19
Accepted:
2024-10-22
Online:
2025-12-28
Published:
2025-03-24
Contact:
Wang Yingbin, MD, Chief physician, Second Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu Province, China;
Co-corresponding author: Zhou Ping, MD, Chief physician, School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China
About author:
Liu Lu, Master candidate, Second Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu Province, China.
Zhong Chang, School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China.
Liu Lu and Zhong Chang contributed equally to this article.
Supported by:
CLC Number:
Liu Lu, Zhong Chang, Yu Xin, Ren Chenyuan, Gong Yangyang, Zhou Ping, Wang Yingbin. Academic progress and clinical application of in vitro synthetic microenvironment to promote maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7856-7862.
2.2 心肌细胞发育和成熟的调节 心脏从胎儿状态发育到成人状态的过程中,心肌细胞的结构、基因表达、代谢和功能不断改变、完善[9],如生长因子、细胞外基质、非心肌细胞、机械及电刺激都能通过调节生长因子-骨形态发生蛋白、转化生长因子β1/activin/NODAL、Wnt/β-catenin、以及整合素/LIMK/Cofilin轴、Hippo-YAP/TAZ、MAPK、RAS-RA-MEK-ERK、PI3K-AKT-mTOR等多条通路调节编码肌原纤维、离子通道和代谢蛋白的表达[10-14],从而促进心脏分化成熟[15-16]。 与成年心肌细胞相比,hPSC-CMs在形态、电生理、钙处理代谢以及增殖能力等多方面都不成熟。形态学方面,成年心肌细胞具有细长的各向异性杆状形态,hPSC-CMs的形状呈多边形或球形。成年心肌细胞的刚性和高度成熟内部结构使它们能够保持杆状,而hPSC-CMs在此方面有一定不足。超微结构方面,成年心肌细胞的肌节长度、排列、交织度和丰度都更高,其中Z盘结构沿肌原纤维或肌膜下紧密排列,有明显的、规则分布的层状嵴。电生理方面,hPSC-CMs易产生自发异步收缩,而成年心肌细胞只有在提供电刺激和同步收缩时才会兴奋[17]。钙处理方面,hPSC-CMs缺乏横小管,肌浆网发育不全,而成年心肌细胞横小管分散,肌纤维周围有发育良好的肌浆网[18]。此外,hPSC-CMs的兴奋收缩耦联慢,成年心肌细胞的兴奋收缩耦联快。 如前所述,心肌细胞的体内自然发育过程是精细而复杂的,hPSC-CMs与成年心肌细胞差距巨大,因此人们探索了许多体外调节促进hPSC-CMs成熟的方法,见图4,5。"
2.3 体外合成微环境促hPSC-CMs成熟 2.3.1 电刺激促hPSC-CMs成熟 心脏始终处于电场的刺激下,心肌细胞动作电位需要几种离子通道的精确协调,这种协调性是由机体发育所调节的[10]。而hPSC-CMs自发收缩、传导慢,缺乏肌节排列,导致低收缩力和钙处理欠佳[19]。LIU等[20]开发了一个名为“AgNWs-E-PDMS”的平台,通过集成一个纳米纹理的聚二甲基硅氧烷悬臂梁和一根嵌入的银纳米线,在该平台上培养hPSC-CMs,其同步搏动和钙瞬态信号增强,SOTTAS等[21]上调连接蛋白43表达,使得hPSC-CMs之间的缝隙连接形成和电耦合显著增强,因此研究这种特殊的兴奋耦连收缩结构如何在体内组装,可能为促进hPSC-CMs闰盘的形成提供更多的线索。RONALDSON-BOUCHARD等[22]将早期心肌细胞放在含有纤维蛋白水凝胶的培养基中培养并在培养过程中进行电刺激,发现具备成人样基因表达谱及显著的超微结构,且生理肌节长度、线粒体密度和含量与成熟的人类心肌细胞相似。GONZALEZ 等[23]将hPSC-CMs在导电聚合物中培养,发现促进了细胞间电信号传递,最终改善了结构蛋白排列及膜去极化速度。 2.3.2 机械刺激促hPSC-CMs成熟 从胚胎发生到成熟的所有阶段,心脏受电容性扩张及周围组织产生的持续机械刺激影响并做出反应[15],研究人员主要通过对细胞施加牵张力或流动剪切应力模拟心脏搏动时受力,从而促进hPSC-CMs成熟[24]。目前出现2种不同的牵张力模式:静态拉伸和循环拉伸。静态拉伸是使用静态支架进行稳定的牵张力加载,一般使用聚二甲基硅氧烷等材料制作各种形状的弹性支柱等成型体,以施加牵张力[25]。LEONARD等[26]开发了一个可调节负荷的机械系统,将hPSC-CMs悬挂在刚性柱和柔性柱之间,通过应用不同长度的支架来调节收缩阻力;在等距研究中,hPSC-CMs的肌力随着负荷的增加而增加,然后趋于稳定,实验结果表明施加负荷增加了肌节长度、心肌细胞面积和伸长量。此外,负荷水平的逐步提升改善了钙处理能力,增加了心脏成熟的几个关键标志物的表达,如成人型心室肌凝蛋白重链。循环拉伸需要根据工程组织的内源跳动频率来调整拉伸周期的长度。循环机械拉伸可以改善心肌组织在收缩性、细胞排列、心脏基因表达和内皮细胞网络形成等方面的心血管特性[27]。KYRIAKOU等[28]提出了制备负载多细胞的圆柱形纤维蛋白基纤维的方法,用于恢复房室结的电信号,他们制造了包含人脐静脉平滑肌细胞、人脐静脉内皮细胞和hPSC-CMs 3种细胞的圆柱形结构,并对它们进行循环拉伸培养以模拟天然房室结构,免疫组化分析显示,hPSC-CMs存在肌节α-肌动蛋白和Cx43信号的电偶联,展现了一定的成熟度。 2.3.3 表面形貌促hPSC-CMs成熟 细胞外基质、可溶性物质和机械力对细胞产生作用,协同影响细胞的发育。已经有研究证明,心肌细胞的形状影响肌节的排列。心肌细胞的长宽比为7∶1时,表现出定向各向异性。因此,开发先进的细胞培养系统,模拟体内微环境的表面形貌是一种潜在的促成熟方法[29]。此外,与各种生物材料混合物相比,利用生物材料的表面特性来指导干细胞的行为是一种更明确、更经济有效、更持久的方法[30]。LIN等[31]将一种命名为5PM(5 μm硅和400 nm聚甲基丙烯酸甲酯颗粒组成的二元胶体晶体)的晶体用作人诱导多能干细胞培养和分化的底物,使用原子力显微镜、分子生物学和转座酶及染色质测序(ATAC-seq)分析了人诱导多能干细胞的细胞核、细胞骨架和表观遗传状态,结果表明5PM的表面形貌对心脏分化成熟的影响可能是普遍存在的。同年,TAN等[32]通过将hPSC-CMs组装在氧化石墨烯修饰的蝴蝶翼上,构建了一个传导一致的人心肌贴片;TAKADA等[33]将hPSC-CMs接种在带有倒v形结构的微加工纤维蛋白凝胶上;同样 XU等[34]用聚二甲基硅氧烷结合表面微图案培养hPSC-CMs,这些研究均发现通过增加培养过程中hPSC-CMs排列结构的均匀有序性,有助于促进其成熟[35]。 2.3.4 基质硬度促hPSC-CMs成熟 细胞外基质硬度是细胞外微环境的重要特征之一,而胶原蛋白是细胞基质硬度的决定因素。从胚胎发育的初始阶段到出生后几周,胶原蛋白的持续积累使心肌组织刚度增加。小鼠实验表明,从胚胎到新生儿阶段,心肌细胞弹性模量增加了3倍[36]。在骨髓间充质干细胞的多谱系细胞研究中,细胞外基质也被证明可以作为一种重要的外部微环境因素用于促进hPSC-CMs的成熟。早期研究表明,适当增加培养基中的细胞外基质硬度不仅能加快人胚胎干细胞的分化效率,还能提高其心肌肌钙蛋白T、成人α-肌球蛋白重链与胎儿β-肌球蛋白重链的表达比例[37]。为了更好地研究基质硬度对hPSC-CMs成熟的影响,后续研究主要集中在不同细胞黏附基质和/或培养表面刚度的作用。FEASTER等[38]在培养基中设置了0.4-0.8 mm厚的未稀释基质胶层,将人诱导多功能干细胞衍生的心肌细胞(human induced pluripotent stem cell-derived cardiac myocytes,hiPSC-CMs)放入其中培养5-7 d后,与对照组(< 0.1 mm,1∶60稀释基质胶层)相比,0.4-0.8 mm厚的未稀释基质胶组hiPSC-CMs具有稳健的收缩和成熟特性,表现为更多杆状形态和有序的肌原纤维排列,肌节长度和动作电位上冲速度显著增加。 2.3.5 生化方法调节促hPSC-CMs成熟 生化因素主要包括激素、代谢底物及部分非天然化学小分子,这些因素已被广泛用于调节hPSC-CMs的成熟[39]。 (1)激素小分子促hPSC-CMs成熟:对于激素来说,糖皮质激素、甲状腺激素和肾上腺素对心肌细胞的发育和成熟有显著影响。甲状腺激素三碘甲状腺氨酸(thyroid hormone triiodothyronine,T3)是主要的甲状腺激素,对心脏生长发育和正常心脏功能的维持具有调节作用。T3可调节肌球蛋白重链、RYR2和SERCA2a的表达以及胎儿titin N2BA到成人titin N2B的同工酶转换,T3水平过低或异常通常与多种心脏疾病有关[40]。虽然标准的hiPSC-CMs诱导培养基中含有甲状腺激素,但研究发现,在培养基中加入更高浓度的甲状腺激素可提高心肌细胞的成熟度。经过1周的T3培养,hiPSC-CMs的大小、肌节长度和收缩力都显著增加。内源性糖皮质激素是胎儿心脏发育所必需的,在妊娠晚期至胎儿器官发育成熟这一阶段,糖皮质激素水平急剧增加。实验表明,糖皮质激素水平可改善小鼠心肌细胞的收缩力,促进Z盘和成熟肌纤维的形成,并增加线粒体的活力[41]。此外,许多研究将T3和地塞米松联合培养诱导hiPSC-CMs,发现hiPSC-CMs表现出更高的电生理成熟度[42-43]。除甲状腺激素外,肾上腺素在心肌细胞的发育和成熟过程中也至关重要。肾上腺素可介导早期发育过程中的肥大反应和搏动率。实验表明,新生小鼠心室细胞的成熟受α-肾上腺素和β-肾上腺素的调节,其中β-肾上腺素可引起hPSC-CMs的搏动速率增加[37]。 (2)代谢底物促hPSC-CMs成熟:心脏可以利用葡萄糖、乳酸及其他碳水化合物来产生能量,而脂肪酸氧化仍是ATP的主要来源。如前所述,因胚胎发育和出生后环境的变化,随着心肌细胞的成熟,心肌细胞的主要代谢模式也发生了转变,由糖酵解转化为脂肪酸氧化,这一能量来源的转换不仅增加了线粒体的数量和代谢,而且促进了心肌细胞形态、结构和生理的成熟[44]。研究表明,脂肪酸处理可以通过上调核因子相关因子2促进hPSC-CMs的成熟,并且显示出与成人心肌细胞相似的代谢特征[45-46]。 YANG等[47]在hiPSCs分化培养基中以生理浓度添加新生儿血清中所含的3种最丰富的脂肪酸(棕榈酸、油酸和亚油酸),发现脂肪酸处理可诱导心肌细胞肥大,并显著增加心肌细胞收缩力,伴随钙瞬态峰值高度和动力学的增强,同时脂肪酸还能增强线粒体的呼吸储备能力,促进hiPSC-CMs的成熟。HORIKOSHI等[48]使用含有脂肪酸的培养基来模拟成年心肌细胞的代谢环境,实验结果表明,hiPSC-CMs的线粒体数量、成熟相关基因的表达和耗氧量均增加。葡萄糖与脂肪酸的作用相反,对心肌细胞的成熟起抑制作用。NAKANO等[49]发现,高糖培养基抑制了hPSC-CMs的遗传、结构、代谢和电生理成熟,实验结果表示高浓度葡萄糖对心肌细胞的成熟起抑制作用,主要与高糖水平激活缺氧诱导因子1α,通过上调乳酸脱氢酶A或过氧化物酶体增殖物激活受体α表达来激活糖酵解并抑制氧化磷酸化有关。 (3)化学小分子促hPSC-CMs成熟:除了生物小分子,还可通过化学小分子改善hPSC-CMs成熟度[50],近期发现乙酰辅酶A羧化酶2抑制剂可促进脂肪酸利用的代谢转变,增强线粒体功能[51],使用AA、GW及非诺贝特可激活过氧化物酶体增殖物激活受体,通过调节糖酵解和脂肪酸氧化改善hPSC-CMs成熟度[52-54],齐墩果酸可通过促进丙酮酸激酶同工型转换促hPSC-CMs成熟[55];POHJOLAINEN等[56]合成GATA4 靶向化合物抑制GATA4-NKX2-5协同作用,增加了hiPSC-CMs的代谢活性和心脏肌钙蛋白T的表达;天然分子Tomatidine及AMPK激活剂能够增加T管的密度、线粒体的数量和大小,增强了线粒体结构成熟[57-58]。 2.3.6 3D培养促hPSC-CMs成熟 细胞存在于复杂的3D网络结构即细胞外基质中,其间复杂的物理和化学信号、细胞间相互作用等因素共同调节细胞的生长发育。心肌细胞成熟是一个复杂的过程,涉及多种信号通路,传统2D培养的方法不能完全重现这一过程。3D培养通过更好地模拟自然组织,再现2D培养无法产生的复杂组织结构、细胞外微环境和细胞串扰等细胞相互作用,细胞更接近自然组织,包括细胞形态、细胞代谢和功能等[59-60]。目前,用于hPSC-CMs的3D培养系统一般包括类器官、3D支架材料及共培养。 (1)类器官培养促hPSC-CMs成熟:类器官是来源于胚胎干细胞、诱导多能干细胞或成体干细胞的体外3D多细胞簇,具有自我更新和自我组织能力,并能模拟体内器官的结构和功能特征,如与脱细胞的心脏基质组成3D结构[61]。近年来,人类心脏类器官组织的研究进展迅速。VARZIDEH等[62]研究表明,人类心脏类器官组织中的心肌细胞比2D培养的心肌细胞更具成熟特征,表现为肌节和离子通道表达量的增加。将人类心脏类器官组织移植到免疫缺陷小鼠腹腔中可进一步增加离子通道蛋白的表达,促进I、A带和T管的形成,减少去极化时间并延长复极化时间。LI等[63]设计了含有细胞黏附基序-RG和糖-葡萄糖(Bio-Gluc)的超分子组装糖肽(Bio-Gluc-RGD),可促进hiPSC-CMs球状体的形成,球状体中的hiPSC-CMs更易获得表型成熟,人类心脏类器官组织中的心肌细胞能更好地获得形态和功能的成熟,且能模拟从胎儿到成年心肌细胞的发育过程。 (2)三维支架材料培养促hPSC-CMs成熟:使用3D支架材料构建与自然组织接近的3D环境也是促hPSC-CMs成熟的常用方法。DATTOLA等[64]设计了一种由聚(乙烯基)醇组成的与肌肉组织细胞外基质刚度相似的生物相容性多孔3D支架,在此3D支架中培养hiPSCs,其分化后的hiPSC-CMs表达较高的心肌组织肌节特异性标志物肌钙蛋白T。ZHANG等[65]利用静电纺丝技术构建了聚-(ε-己内酯)纳米纤维支架,并将hiPSC-CMs接种到该支架中进行孵育,结果在3D纳米支架中观察到明显的肌膜重构和肌丝重定位过程,心肌成熟蛋白如β-MHC和MLC2v的表达量增加。hiPSC-CMs具有成熟的3D形态,伴随着钙瞬态动力学的增强和最大上冲程速度的增加。近期,KERMANI 等[66]将hPSC-CMs培养在长方体 3D 微支架中发现 小管样结构明显增加。 (3)细胞共培养促hPSC-CMs成熟:心肌细胞占心脏组织体积的大部分,约75%,但只占心脏中存在的细胞总数的30%左右[67-68],其余细胞大部分为非心肌细胞,主要为血管内皮细胞,其次是心脏成纤维细胞[69-70]。在体内心脏微环境中,心肌细胞与心脏成纤维细胞参与形成3D结构,其完整性主要由心脏成纤维细胞产生的细胞外基质维持,在胚胎心脏发育阶段以及心肌结构和功能成熟中发挥关键作用,同时心脏成纤维细胞也会调节和干扰心肌细胞的电行为[70]。研究表明,心肌细胞与成纤维细胞、内皮细胞和平滑肌细胞等非心肌细胞结合可以提高形态和功能方面的成熟度[71-73]。许多研究发现,共培养系统中非心肌细胞分泌的旁分泌因子在促进hPSC-CMs的增殖或成熟中起着关键作用。TAN等[74]认为,在共培养系统中心前膜细胞分泌胰岛素样生长因子2,可能对hPSC-CMs产生促增殖成熟作用。同时,考虑到细胞在3D环境中的生长更有利于其功能和结构的成熟,大部分方法使hPSC-CMs培养更加接近体内环境,将不同的心脏细胞结合在3D结构中,可以更好地模拟人类心脏组织中存在的相互作用、复杂信号和动态网络等[75-76]。GIACOMELLI等[77]联合hPSC-CMs、心脏成纤维细胞和上皮细胞构建3D心脏微组织,发现hPSC-CMs的肌节结构和T管结构得到了改善,能量代谢和电生理学也更加成熟。 2.3.7 多因素联合培养促hPSC-CMs成熟 研究表明,多因素联合应用可额外加速hPSC-CMs成熟[78-79]。SHEN等[80]将钙补充与电起搏结合;sun等[81]设计了将3D培养和电刺激、部分生物化学分子调控相联合的biowire工程平台;最近发现激活p53后,可通过正向调节FOXO-FOXM1促进3D悬浮培养中hPSC-CMs成熟特性增加[82]。 hPSC-CMs成熟的具体表现及其相关基因,见表1。 体外合成微环境促hPSC-CMs成熟的方式,见表2。"
[1] VIRANI SS, ALONSO A, BENJAMIN EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):e139-e596. [2] MURRY CE, MACLELLAN WR. Stem cells and the heart-the road ahead. Science. 2020;367(6480):854-855. [3] TENREIRO MF, LOURO AF, ALVES PM, et al. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med. 2021;6(1):30. [4] 李涵,国海东.诱导多能干细胞衍生的心肌细胞成熟问题及解决策略[J].中国组织化学与细胞化学杂志,2020,29(1):81-86. [5] LOPEZ CA, AL-SIDDIQI HHAA, PURNAMA U, et al. Physiological and pharmacological stimulation for in vitro maturation of substrate metabolism in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep. 2021; 11(1):7802. [6] FORGHANI P, RASHID A, ARMAND LC, et al. Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep. 2024;14(1):2243. [7] JI S, TU W, HUANG C, et al. The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Mol Cells. 2022;45(12):923-934. [8] XIANG H, XU H, TAN B, et al. AKAP1 Regulates Mitochondrial Dynamics during the Fatty-Acid-Promoted Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Indicated by Proteomics Sequencing. Int J Mol Sci. 2023;24(9):8112. [9] GUO Y, PU WT. Cardiomyocyte Maturation: New Phase in Development. Circ Res. 2020;126(8):1086-1106. [10] KARBASSI E, FENIX A, MARCHIANO S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020; 17(6):341-359. [11] GARAY BI, GIVENS S, ABREU P, et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Reports. 2022;17(9):2005-2022. [12] NOH JM, CHOI SC, SONG MH, et al. The Activation of the LIMK/Cofilin Signaling Pathway via Extracellular Matrix-Integrin Interactions Is Critical for the Generation of Mature and Vascularized Cardiac Organoids. Cells. 2023;12(16):2029. [13] 叶亮.AMPK调节线粒体功能促进hiPSC-CMs成熟的研究[D].重庆:重庆医科大学,2021. [14] 李晓童.基质硬度对人iPSCs源性心肌细胞成熟性的影响及机制[D].上海:第二军医大学,2017. [15] SCUDERI GJ, BUTCHER J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol. 2017;5:50. [16] 刘经纶,秦丽颖,廖凌子,等.调控人多能干细胞来源心肌样细胞分化成熟的信号通路及其相关化合物研究进展[J].中国细胞生物学学报,2021, 43(9):1861-1868. [17] SUN X, NUNES SS. Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol. 2017;5:19. [18] GU X, ZHOU F, MU J. Recent Advances in Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Promoted by Mechanical Stretch. Med Sci Monit. 2021;27:e931063. [19] PROTZE SI, LEE JH, KELLER GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell. 2019;25(3):311-327. [20] LIU Y, OYUNBAATAR NE, SHANMUGASUNDARAM A, et al. Nano-textured polydimethylsiloxane cantilever with embedded silver nanowire networks for drug screening applications. Sens Actuators B Chem. 2023;390:134014. [21] SOTTAS V, WAHL CM, TRACHE MC, et al. Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. J Mol Cell Cardiol. 2018;120: 31-41. [22] RONALDSON-BOUCHARD K, MA SP, YEAGER K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239-243. [23] GONZALEZ G, NELSON AC, HOLMAN AR, et al. Conductive electrospun polymer improves stem cell-derived cardiomyocyte function and maturation. Biomaterials. 2023;302:122363. [24] 戴越,周帆,郑建伟.机械牵张对人诱导多能干细胞分化来源的心肌细胞成熟的影响[J].北京生物医学工程,2023,42(2):130-137. [25] ABILEZ OJ, TZATZALOS E, YANG H, et al. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells. 2018;36(2):265-277. [26] LEONARD A, BERTERO A, POWERS JD, et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol. 2018;118:147-158. [27] LUX M, ANDRÉE B, HORVATH T, et al. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater. 2016;30:177-187. [28] KYRIAKOU S, LUBIG A, SANDHOFF CA, et al. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels. 2023;9(9):677. [29] YANG X, PABON L, MURRY CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114(3):511-523. [30] CUI C, WANG J, QIAN D, et al. Binary Colloidal Crystals Drive Spheroid Formation and Accelerate Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS Appl Mater Interfaces. 2019; 11(4):3679-3689. [31] LIN Y, ZHANG F, CHEN S, et al. Binary Colloidal Crystals Promote Cardiac Differentiation of Human Pluripotent Stem Cells via Nuclear Accumulation of SETDB1. ACS Nano. 2023;17(3):3181-3193. [32] TAN Y, LU T, CHEN Y, et al. Engineering a conduction-consistent cardiac patch with graphene oxide modified butterfly wings and human pluripotent stem cell-derived cardiomyocytes. Bioeng Transl Med. 2023;8(3):e10522. [33] TAKADA T, SASAKI D, MATSUURA K, et al. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials. 2022; 281:121351. [34] XU C, WANG L, YU Y, et al. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater Sci. 2017;5(9):1810-1819. [35] JIMENEZ-VAZQUEZ EN, JAIN A, JONES DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc. 2022;2(11):e601. [36] AHMED RE, ANZAI T, CHANTHRA N, et al. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol. 2020;8:178. [37] ZHANG R, GUO T, HAN Y, et al. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater. 2021;109(7): 949-960. [38] FEASTER TK, CADAR AG, WANG L, et al. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res. 2015;117(12):995-1000. [39] WANG Y, YU M, HAO K, et al. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep. 2022;18(8):2966-2981. [40] TAN SH, YE L. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. J Cardiovasc Transl Res. 2018;11(5):375-392. [41] WU P, DENG G, SAI X, et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep. 2021;41(6): BSR20200833. [42] PARIKH SS, BLACKWELL DJ, GOMEZ-HURTADO N, et al. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res. 2017;121(12): 1323-1330. [43] WANG L, WADA Y, BALLAN N, et al. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2021;161:130-138. [44] GARBERN JC, LEE RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1):177. [45] 高桢,周帆,穆军升.脂肪酸对诱导多能干细胞分化成熟为心肌细胞的影响进展[J].中华实验外科杂志,2022,39(11):2285-2288. [46] 张心愿.人诱导多能干细胞来源心肌细胞成熟过程中NRF2对能量代谢的调节作用[D].重庆:重庆医科大学,2021. [47] YANG X, RODRIGUEZ ML, LEONARD A, et al. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports. 2019;13(4):657-668. [48] HORIKOSHI Y, YAN Y, TERASHVILI M, et al. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Cells. 2019; 8(9):1095. [49] NAKANO H, MINAMI I, BRAAS D, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 2017;6:e29330. [50] 陈颖,杨礼,宫艺其,等.Torin1、Nutlin-3a促进人诱导多能干细胞来源早期心肌细胞成熟的初步研究[J].组织工程与重建外科,2021,17(6):511-519. [51] CORREIA C, CHRISTOFFERSSON J, TEJEDOR S, et al. Enhancing Maturation and Translatability of Human Pluripotent Stem Cell-Derived Cardiomyocytes through a Novel Medium Containing Acetyl-CoA Carboxylase 2 Inhibitor. Cells. 2024;13(16):1339. [52] LEE SG, RHEE J, SEOK J, et al. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med. 2024;13(8):750-762. [53] CHIRICO N, KESSLER EL, MAAS RGC, et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2022;13(1):531. [54] WICKRAMASINGHE NM, SACHS D, SHEWALE B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2022;29(4):559-576.e7. [55] 谢敏,周琴,颜亮,等.齐墩果酸对hiPSCs衍生心肌细胞成熟的促进作用及机制[J].解放军医学杂志,2021,46(4):319-326. [56] POHJOLAINEN L, KINNUNEN SM, AUNO S, et al. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther. 2024;15(1):5. [57] KIM YS, YOON JW, KIM D, et al. Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction. Exp Mol Med. 2022;54(4):493-502. [58] LI D, ARMAND LC, SUN F, et al. AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling. Stem Cell Res Ther. 2023;14(1):322. [59] MIRBAGHERI M, ADIBNIA V, HUGHES BR, et al. Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz. 2019; 6(1): 45-71. [60] ZHANG G, LI W, YU M, et al. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv Sci (Weinh). 2023;10(11):e2206264. [61] COCA E, CHO S, KAUFFMAN C, et al. Environmental Cues Facilitate Maturation and Patterning of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Physiol Biochem. 2024;58(5):538-547. [62] VARZIDEH F, PAHLAVAN S, ANSARI H, et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials. 2019;192:537-550. [63] LI H, YE W, YU B, et al. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater. 2023;12(25):e2300696. [64] DATTOLA E, PARROTTA EI, SCALISE S, et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019;9(8):4246-4257. [65] ZHANG M, XU Y, CHEN Y, et al. Three-Dimensional Poly-(ε-Caprolactone) Nanofibrous Scaffolds Promote the Maturation of Human Pluripotent Stem Cells-Induced Cardiomyocytes. Front Cell Dev Biol. 2022;10:875278. [66] KERMANI F, MOSQUEIRA M, PETERS K, et al. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol. 2023;118(1):13. [67] CAMELLITI P, BORG TK, KOHL P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40-51. [68] BRUTSAERT DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59-115. [69] PINTO AR, ILINYKH A, IVEY MJ, et al. Revisiting Cardiac Cellular Composition. Circ Res. 2016;118(3):400-409. [70] KLESEN A, JAKOB D, EMIG R, et al. Cardiac fibroblasts : Active players in (atrial) electrophysiology? Herzschrittmacherther Elektrophysiol. 2018;29(1):62-69. [71] YOSHIDA S, MIYAGAWA S, FUKUSHIMA S, et al. Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Mol Ther. 2018;26(11):2681-2695. [72] VARZIDEH F, MAHMOUDI E, PAHLAVAN S. Coculture with noncardiac cells promoted maturation of human stem cell-derived cardiomyocyte microtissues. J Cell Biochem. 2019;120(10):16681-16691. [73] DUNN KK, REICHARDT IM, SIMMONS AD, et al. Coculture of Endothelial Cells with Human Pluripotent Stem Cell-Derived Cardiac Progenitors Reveals a Differentiation Stage-Specific Enhancement of Cardiomyocyte Maturation. Biotechnol J. 2019;14(8):e1800725. [74] TAN JJ, GUYETTE JP, MIKI K, et al. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat Commun. 2021;12(1):4997. [75] MA Z, WANG J, LOSKILL P, et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun. 2015;6:7413. [76] WARMFLASH A, SORRE B, ETOC F, et al. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11(8):847-854. [77] GIACOMELLI E, MERAVIGLIA V, CAMPOSTRINI G, et al. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell. 2020; 26(6):862-879.e11. [78] RUAN JL, TULLOCH NL, RAZUMOVA MV, et al. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation. 2016;134(20):1557-1567. [79] MAIHEMUTI W, MURATA K, ABULAITI M, et al. Simultaneous electro-dynamic stimulation accelerates maturation of engineered cardiac tissues generated by human iPS cells. Biochem Biophys Res Commun. 2024;733:150605. [80] SHEN S, SEWANAN LR, SHAO S, et al. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports. 2022;17(9):2037-2049. [81] SUN X, NUNES SS. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods. 2016;101:21-26. [82] VELAYUTHAM N, GARBERN JC, ELWELL HLT, et al. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc. 2024;13(13):e033155. |
[1] | Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang. Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1913-1922. |
[2] | Yu Jingbang, Wu Yayun. Regulatory effect of non-coding RNA in pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1659-1666. |
[3] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[4] | Yuan Weibo, Liu Chan, Yu Limei. Potential application of liver organoids in liver disease models and transplantation therapy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1684-1692. |
[5] | Peng Hongcheng, Peng Guoxuan, Lei Anyi, Lin Yuan, Sun Hong, Ning Xu, Shang Xianwen, Deng Jin, Huang Mingzhi . Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1497-1503. |
[6] | Liu Haoyang, Xie Qiang, Shen Mengran, Ren Yansong, Ma Jinhui, Wang Bailiang, Yue Debo, Wang Weiguo . Application, research hotspots, and shortcomings of degradable zinc-based alloys in bone defect repair and reconstruction [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 839-845. |
[7] | Huang Haina, Yu Yanrong, Bi Jian, Huang Miao, Peng Weijie. Epigenetic characteristics of hepatogenic differentiation of mesenchymal stem cells in three-dimensional culture [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7848-7855. |
[8] | Guo Zhao, Zhuang Haoyan, Shi Xuewen. Role of exosomes derived from mesenchymal stem cells in treatment of colorectal cancer [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7872-7879. |
[9] | Su Yongkun, Sun Hong, Liu Miao, Yang Hua, Li Qingsong. Development of novel antioxidants and antioxidant combination carried by nano-hydrogel systems in treatment of intervertebral disc degeneration [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7376-7384. |
[10] | Yi Xiaoding, Zhang Di, Guo Hong, Qing Liang, Zhao Tianyu. Decellularized tendon scaffold: a biomedical material for tendon injury repair [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7385-7392. |
[11] | Li Zhongzheng, Chen Zhenghao, Tang Ziyou, Lou Kaiyang, Zhang Rui, Liu Qi, Zhao Na, Yang Kun. Effects of scaffold materials combined with biological factors on biological characteristics of dental follicle cell proliferation and osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7405-7414. |
[12] | Zhao Cong, Fu Huiyuan, Su Nite, Ji Jie, Zhang Lei, Wang Yaxian. Application of biodegradable magnesium and magnesium-based materials in oral diseases [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7423-7430. |
[13] | Zhang Pulian, Liu Baoru, Yang Min . Mesenchymal stem cells for treatment of aplastic anemia: inhibiting or activating relevant targets in its pathological evolution [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6800-6810. |
[14] | Yang Cheng, Li Weimin, Ran Dongcheng, Xu Jiamu, Wu Wangxiang, Xu Jiafu, Chen Jingjing, Jiang Guangfu, Wang Chunqing. Ferroptosis and osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 554-562. |
[15] | He Kai, Xing Wenhua, Liu Shengxiang, Bai Xianming, Zhou Chen, Gao Xu, Qiao Yu, He Qiang, Gao Zhiyu, Guo Zhen, Bao Aruhan, Li Chade. Constructing a model of degenerative scoliosis using finite element method: biomechanical analysis in etiology and treatment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 572-578. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||