[1] PRINS ND, SCHELTENS P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157-165.
[2] LOVE S, MINERS JS. White matter hypoperfusion and damage in dementia: post-mortem assessment. Brain Pathol. 2015;25(1):99-107.
[3] RAJEEV V, FANN DY, DINH QN, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 2022;12(4):1639-1658.
[4] LI M, MENG N, GUO X, et al. Dl-3-n-Butylphthalide Promotes Remyelination and Suppresses Inflammation by Regulating AMPK/SIRT1 and STAT3/NF-κB Signaling in Chronic Cerebral Hypoperfusion. Front Aging Neurosci. 2020;12:137.
[5] CHOI BR, KIM DH, BACK DB, et al. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion. Stroke. 2016;47(2):542-547.
[6] NIU HM, WANG MY, MA DL, et al. Epimedium flavonoids improve cognitive impairment and white matter lesions induced by chronic cerebral hypoperfusion through inhibiting the Lingo-1/Fyn/ROCK pathway and activating the BDNF/NRG1/PI3K pathway in rats. Brain Res. 2020;1743:146902.
[7] MATSUI Y, MURAMATSU F, NAKAMURA H, et al. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol. 2024;7(1):338.
[8] BAE HG, KIM TK, SUK HY, et al. White matter and neurological disorders. Arch Pharm Res. 2020;43(9):920-931.
[9] SHAHSAVANI N, KATARIA H, KARIMI-ABDOLREZAEE S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis. 2021;1867(6):166117.
[10] KWON KJ, LEE EJ, KIM MK, et al. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia. Neurobiol Dis. 2015;73: 12-23.
[11] BUGIANI M, VUONG C, BREUR M, et al. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol. 2018;28(3):408-421.
[12] LIDDELOW SA, GUTTENPLAN KA, CLARKE LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487.
[13] SHEN XY, SHI SH, LI H, et al. The role of Gadd45b in neurologic and neuropsychiatric disorders: An overview. Front Mol Neurosci. 2022;15:1021207.
[14] YIN Q, DU T, YANG C, et al. Gadd45b is a novel mediator of depression-like behaviors and neuroinflammation after cerebral ischemia. Biochem Biophys Res Commun. 2021;554:107-113.
[15] YANG Y, JU J, DENG M, et al. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion. Int J Mol Sci. 2017;18(1):3.
[16] MA D, ZHU Y, LI Y, et al. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages. Behav Brain Res. 2016;312:20-29.
[17] DUNCOMBE J, KITAMURA A, HASE Y, et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond). 2017;131(19):2451-2468.
[18] CUADRADO-GODIA E, DWIVEDI P, SHARMA S, et al. Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. J Stroke. 2018;20(3):302-320.
[19] HASE Y, HORSBURGH K, IHARA M, et al. White matter degeneration in vascular and other ageing-related dementias. J Neurochem. 2018; 144(5):617-633.
[20] HU HY, OU YN, SHEN XN, et al. White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev. 2021;120:16-27.
[21] ISHIKAWA H, SHINDO A, MIZUTANI A, et al. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab. 2023;43(2_suppl):18-36.
[22] WASHIDA K, HATTORI Y, IHARA M. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. Int J Mol Sci. 2019;20(24): 6176.
[23] LIU Q, BHUIYAN MIH, LIU R, et al. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J Neuroinflammation. 2021;18(1):187.
[24] DEL CUORE A, PACINELLA G, RIOLO R, et al. The Role of Immunosenescence in Cerebral Small Vessel Disease: A Review. Int J Mol Sci. 2022;23(13):7136.
[25] ZHENG C, YANG C, GAO D, et al. Cornel Iridoid Glycoside Alleviates Microglia-Mediated Inflammatory Response via the NLRP3/Calpain Pathway. J Agric Food Chem. 2022;70(38):11967-11980.
[26] MIYANOHARA J, KAKAE M, NAGAYASU K, et al. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. J Neurosci. 2018;38(14):3520-3533.
[27] KONISHI H, OKAMOTO T, HARA Y, et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J. 2020;39(22): e104464.
[28] CHENG YJ, WANG F, FENG J, et al. Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke. Brain. 2024;147(4): 1294-1311.
[29] CAO Q, CHEN J, ZHANG Z, et al. Astrocytic CXCL5 hinders microglial phagocytosis of myelin debris and aggravates white matter injury in chronic cerebral ischemia. J Neuroinflammation. 2023;20(1):105.
[30] WAN T, ZHU W, ZHAO Y, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022;13(1): 1134.
[31] MIYAMOTO N, MAKI T, SHINDO A, et al. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor. J Neurosci. 2015;35(41):14002-14008.
[32] MIYAMOTO N, MAGAMI S, INABA T, et al. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia. 2020;68(9):1910-1924.
[33] ZHENG J, LU J, MEI S, et al. Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation. 2021;18(1):43.
[34] LIU B, SUN X, SUYEOKA G, et al. TGFβ signaling induces expression of Gadd45b in retinal ganglion cells. Invest Ophthalmol Vis Sci. 2013; 54(2):1061-1069.
[35] LIU B, LI J, LI L, et al. Electrical stimulation of cerebellar fastigial nucleus promotes the expression of growth arrest and DNA damage inducible gene β and motor function recovery in cerebral ischemia/reperfusion rats. Neurosci Lett. 2012;520(1):110-114.
[36] LIU B, LI LL, TAN XD, et al. Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol. 2015; 52(3):1245-1256.
[37] LIU B, ZHANG YH, JIANG Y, et al. Gadd45b is a novel mediator of neuronal apoptosis in ischemic stroke. Int J Biol Sci. 2015;11(3):353-360.
[38] ZHENG L, JIA J, CHEN Y, et al. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation. 2022;19(1):128.
[39] BEN-ARI H, LIFSCHYTZ T, WOLF G, et al. White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion. Brain Res. 2019;1711:193-201.
[40] EISENBACH M, KARTVELISHVILY E, ESHED-EISENBACH Y, et al. Differential clustering of Caspr by oligodendrocytes and Schwann cells. J Neurosci Res. 2009; 87(15):3492-3501.
[41] KISTER A, KISTER I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem. 2023;10:1041961. |