Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (3): 478-485.doi: 10.12307/2025.135
Previous Articles Next Articles
Wang Zilong, Meng Xin, Zhang Zhiqi, Xie Yu, Meng Lingyue, Zhang Qiuxia, Kong Lingyu
Received:
2023-12-01
Accepted:
2024-02-04
Online:
2025-01-28
Published:
2024-06-03
Contact:
Zhang Qiuxia, PhD, Professor, School of Physical Education, Soochow University, Suzhou 215000, Jiangsu Province, China
Kong Lingyu, PhD, Rehabilitation therapist, School of Physical Education, Soochow University, Suzhou 215000, Jiangsu Province, China
About author:
Wang Zilong, Master candidate, School of Physical Education, Soochow University, Suzhou 215000, Jiangsu Province, China
Supported by:
CLC Number:
Wang Zilong, Meng Xin, Zhang Zhiqi, Xie Yu, Meng Lingyue, Zhang Qiuxia, Kong Lingyu. Biomechanical characteristics of lower extremities during counter movement jump in male patients with functional ankle instability[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 478-485.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.4 两组受试者运动学变量测试结果 起跳阶段,髋关节、膝关节和踝关节峰值角度指标上以及在离地瞬间时刻,在髋关节、膝关节和踝关节角度指标上,均未观察到统计学差异(P > 0.05),见表2。 落地瞬间,髋关节屈曲角度指标上观察到了交互效应(P=0.014)。提示FAI组的患侧和健康对照组的匹配侧在执行下蹲跳动作时落地时刻可能有着不同的生物力学特征,简单效应显示,与健康对照组的匹配侧相比,FAI 组患侧显示出了更小的屈曲角度(P=0.039);在组别的主效应上观察到了FAI 组相较于健康对照组显示出了更小的髋关节外展角度(P=0.022)、更小的膝关节内翻角度(P=0.010)、更大的膝关节外旋角度(P=0.021)、更小的踝关节内翻角度(P=0.004)、更小的踝关节外旋角度(P=0.008);在vGRF峰值时刻,FAI 组相较于健康对照组显示出了更小的踝关节内翻角度(P=0.044)。在其余指标上未观察到统计学差异(P > 0.05),见表3。 "
2.5 两组受试者动力学变量测试结果 离地瞬间时刻,在膝关节内旋力矩、踝关节内翻力矩、踝关节内旋力矩指标上观察到了交互效应(P=0.026,0.031,0.003),提示FAI组的患侧和健康对照组的匹配侧在执行下蹲跳动作时的离地时刻可能有着不同的生物力学特征,简单效应显示,与健康对照组相比,FAI组患侧观察到了更小的膝关节内旋力矩及踝关节内旋力矩(P=0.020,0.009),在其余指标上未观察到统计学差异(P > 0.05),见表4。 在vGRF峰值和载荷率指标上观察到了交互效应(P=0.031)。但经过简单效应显示,与健康对照组相比,FAI组vGRF峰值和载荷率未观察到统计学差异(P > 0.05),并且在其余指标上未观察到统计学差异(P > 0.05),见表5。 2.6 不良事件 测试期间 30 名受试者均未发生不良事件。"
[1] MEDINA MCKEON JM, HOCH MC. The ankle-joint complex:a kinesiologic approach to lateral ankle sprains. J Athl Train. 2019;54(6):589-602. [2] ONAMBELE GL, DEGENS H. Improvements in muscle-tendon properties are beneficial to balance in multiple sclerosis. Mult Scler. 2006;12(5):666-669. [3] 鲍春雨,颜明明.排球运动起跳过程中踝关节的生物力学特性[J].中国组织工程研究,2020,24(5):662-666. [4] ROSENBAUM D, BECKER HP, GERNGRO H, et al. Peroneal reaction times for diagnosis of functional ankle instability. J Foot Ankle Surg. 2010;6(1):31-38. [5] GRIBBLE PA, BLEAKLEY CM, CAULFIELD BM, et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):1493-1495. [6] ROOS KG, KERR ZY, MAUNTEL TC, et al. The Epidemiology of Lateral Ligament Complex Ankle Sprains in National Collegiate Athletic Association Sports. Am J Sports Med. 2017;45(1):201-209. [7] MCKAY GD, GOLDIE PA, PAYNE WR, et al. Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35(2):103-108. [8] BAHR R, BAHR IA. Incidence of acute volleyball injuries: a prospective cohort study of injury mechanisms and risk factors. Scand J Med Sci Sports. 1997;7(3):166-171. [9] 吴成亮,郝卫亚,肖晓飞,等.体操运动员踝关节损伤的流行病学研究进展[J].中国运动医学杂志,2019,38(5):412-417. [10] MIKLOVIC TM, DONOVAN L, PROTZUK OA, et al. Acute lateral ankle sprain to chronic ankle instability: a pathway of dysfunction. Phys Sports Med. 2017;46(1):116-122. [11] 张冉,于惠贤,胡志伟,等.慢性功能性踝关节不稳患者踝部电流感觉阈值的研究[J].中国康复医学杂志,2019,34(11):1323-1327. [12] MA T, LI Q, SONG Y, et al. Chronic ankle instability is associated with proprioception deficits: a systematic review and meta-analysis. J Sport Health Sci. 2021;10(2):182-191. [13] GS N, JM F, BM T, et al. Kinesio taping does not improve ankle functional or performance in people with or with-out ankle injuries: Systematic review and meta-analysis. Clin Rehabil. 2021;35(2):182-199. [14] CAIN M, BAN R, CHEN Y, et al. Four-Week Ankle-Rehabilitation Programs in Adolescent Athletes With Chronic Ankle Instability. J Athl Train. 2020;55(8):801-810. [15] 李雪梅,闵雷子,丁宇,等.男性规律运动人群常见运动损伤风险因素评价[J].北京体育大学学报,2022,45(10):141-156. [16] 杨中兵,王江萍,周文.近30年国外纵跳研究进展分析——基于知识图谱的可视化分析[J].贵州师范大学学报(社会科学版), 2021(3):124-138. [17] DUTAILLIS B, DIAMOND LE, LAZARCZUK SL, et al. Vertical Jump Testing Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Med Sci Sports Exerc. 2023. doi: 10.1249/mss.0000000000003298. [18] RAMIREZ-CAMPILLO R, ANDRADE DC, NIKOLAIDIS PT, et al. Effects of Plyometric Jump Training on Vertical Jump Height of Volleyball Players: A Systematic Review with Meta-Analysis of Randomized-Controlled Trial. J Sports Sci Med. 2020;19(3):489-499. [19] HACKETT D, DAVIES T, SOOMRO N, et al. Olympic weightlifting training improves vertical jump height in sports people: a systematic review with meta-analysis. Br J Sports Med. 2016;50(14):865-872. [20] TAYLOR JB, FORD KR, SCHMITZ RJ, et al. Sport-specific biomechanical responses to an ACL injury prevention programme: A randomised controlled trial. J Sports Sci. 2018;36(21):2492-2501. [21] HERB CC, GROSSMAN K, FEGER MA, et al. Lower Extremity Biomechanics During a Drop-Vertical Jump in Participants With or Without Chronic Ankle Instability. J Athl Train. 2018:1062-6050-481-15. [22] 张燊,傅维杰,刘宇.不同着地冲击模式的下肢生物力学研究[J].体育科学,2016,36(1):59-66. [23] MENG L, KONG L, KONG L, et al. Effects of visual deprivation on the injury of lower extremities among functional ankle instability patients during drop landing: A kinetics perspective. Front Physiol. 2022;13: 1074554. [24] JEON K, KIM K, KANG N. Leg stiffness control during drop landing movement in individuals with mechanical and functional ankle disabilities. Sports Biomech. 2022;21 (9):1093-1106. [25] MOISAN G, MAINVILLE C, DESCARREAUX M, et al. Unilateral jump landing neuromechanics of individuals with chronic ankle instability. J Sci Med Sport. 2020;23(5):430-436. [26] 王凯,毛文慧.功能性踝关节不稳者原地纵跳时下肢肌肉激活特征[J].福建体育科技,2022,41(2):48-54. [27] GRIBBLE PA, DLEAHUNT E, BLEAKLEY CM, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Athl Train. 2014; 49(1):121-127. [28] HILLER CE, REFSHAUGE KM, HERBERT RD, et al. Balance and recovery from a perturbation are impaired in people with functional ankle instability. Clin J Sport Med. 2007;17(4):269-275. [29] RUSSO Y, VANNOZZI G. Anticipatory postural adjustments in forward and backward single stepping: Task variability and effects of footwear. J Biomech. 2021;122:110442. [30] KOTSIFAKI A, WHITELEY R, VAN ROSSOM S, et al. Single leg hop for distance symmetry masks lower limb biomechanics: time to discuss hop distance as decision criterion for return to sport aster ACL reconstruction? Br J Sports Med. 2022;56(5):249-256. [31] 毛晓锟,张秋霞,王国栋,等.优势侧和非优势侧跑步支撑期的生物力学偏侧性研究[J].首都体育学院学报,2017,29(1):91-96. [32] YEO IK, JOHNSON RA. A new family of power transformations to improve normality or symmetry. Biometrika. 2000;87(4):954-959. [33] LAUGHLIN WA, WEINHANDL JT, KERNOZEK TW, et al. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10): 1845-1851. [34] WILKERSON GB, ALVAREZ RG. Rotary Ankle Instability: Overview of Pathomechanics and Prognosis. Athl Ther Today. 2010;14(4):4-8. [35] FERNANDES N, ALLISON GT, HOPPER D. Peroneal latency in normal and injured ankles at varying angles of perturbation. Clin Orthop Relat Res. 2000;(375):193-201. [36] WIKSTROM E, TILLMAN M, CHMIELEWSKI T, et al. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability. Scand J Med Sci Sports. 2010;20(1): e137-e144. [37] YEOW C, LEE P, GOH J. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum Mov Sci. 2011,30(3):624-635. [38] 杨海洲,杨秋翔,陈雨灵,等.踝关节外侧副韧带的解剖研究及对重建手术的意义[J].解剖学研究,2021,43(3):264-267. [39] LIN JZ, LIN YA, LEE HJ. Are Landing Biomechanics Altered in Elite Athletes with Chronic Ankle Instability. J Sci Med Sport. 2019;18(4): 653-662. [40] GEHRING D, WISSLER S, LOHRER H, et al. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking. Gait Posture. 2014;39(3):894-898. [41] AKSELROD M, MARTUZZI R, SERINO A, et al. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. Neuroimage. 2017;159:473-487. [42] LI Y, KO J. Biomechanics of ankle giving way: A case report of accidental ankle giving way during the drop landing test. J Sport Health Sci. 2020; 8(12):494-502. [43] LEE J, SONG Y, SHIN CS. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing. Gait Posture. 2018;62:99-104. [44] STANLEY LE, MATTHEW H, BRITTNEY LH, et al. Ankle Dorsiflexion displacement is associated with hip and knee kinematics in females following anterior cruciate ligament reconstruction. Res Sports Med. 2019;27(1):21-33. [45] 解浩东,罗炯.着地动作中人体下肢的刚度作用[J].中国组织工程研究,2018,22(18):1306-1312. [46] 王涛,罗文,郭英,等.膝关节内、外翻角度对踝关节扭伤类型及次数的影响[J].中国骨与关节损伤杂志,2023,38(12): 1258-1261. [47] TAMURA A, AKASAKA K, OTSUDO T, et al. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS One. 2017;12(6): e0179810. [48] LEE TQ, MORRIS G, CSINTALAN RP. The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther. 2003;33(11):686-693. [49] GARCIA-LUNA MA, CORTELL-TORMO JM, GARCÍA-JAÉN M, et al. Acute Effects of ACL Injury-Prevention Warm-Up and Soccer-Specific Fatigue Protocol on Dynamic Knee Valgus in Youth Male Soccer Players. Int J Environ Res Public Health. 2020;17(15):5608. [50] 张泽毅,刘卉,张美珍,等.FAI和Coper患者踝关节扭伤相关动作中的下肢运动生物力学特征[J].中国体育科技,2023,59(8):47-55. [51] 侯曼,侯佳,王汉玉. 从不同高度下落到不同硬度的地面上下肢关节的力学响应[J]. 广州体育学院学报,2003(4):52-54. [52] 展利东,路玲玲,赵晓东,等.功能性踝关节不稳的生物力学研究进展[J].中国康复,2023,38(8):509-512. [53] LIMA YL, FERREIRA VMLM, DE PAULA LIMA PO, et al. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys Ther Sport. 2018;29:61-69. [54] WYNDOW N, DE JONG A, RIAL K, et al. The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. J Foot Ankle Res. 2016;9:3. [55] JAMALUDIN NI, SAHABUDDIN FNA, RAJA AHMAD NAJIB RKM, et al. Bottom-Up Kinetic Chain in Drop Landing among University Athletes with Normal Dynamic Knee Valgus. Int J Environ Res Public Health. 2020;17(12):4418. [56] 张阳. 单侧功能性踝关节不稳者在落地过程中生物力学特征分析[D].苏州: 苏州大学,2014. |
[1] | Sun Xiaojun, Wang Huaming, Zhang Dehong, Song Xuewen, Huang Jin, Zhang Chen, Pei Shengtai. Effect of finite element method in treatment of developmental dysplasia of the hip in children [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1897-1904. |
[2] | Li Liangkui, Huang Yongcan, Wang Peng, Yu Binsheng. Effect of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1761-1767. |
[3] | Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao. Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1768-1774. |
[4] | Zhou Jinhai, Li Jiangwei, Wang Xuquan, Zhuang Ying, Zhao Ying, Yang Yuyong, Wang Jiajia, Yang Yang, Zhou Shilian. Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1775-1782. |
[5] | Fu Enhong, Yang Hang, Liang Cheng, Zhang Xiaogang, Zhang Yali, Jin Zhongmin. OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1789-1795. |
[6] | Lu Jieming, Li Yajing, Du Peijie, Xu Dongqing. Effects of artificial turf versus natural grass on biomechanical performance of the lower limbs in young females during jump-landing [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1101-1107. |
[7] | Yang Yicheng, Zheng Zhizhen, Liang Shuangxue, Wu Chengliang, Du Yunyun. Influence and implications of basketball shoes' functional parameters on human biomechanics [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7620-7628. |
[8] | Song Xubin, Wu Dou, Zhao Enzhe, Zhang Xingyu, Zhang Xiaolun, Wang Chuheng. Finite element analysis of a new femoral neck spiral blade system to treat femoral intertrochanteric fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7041-7047. |
[9] | Wang Lei, Li Chengsong, Zhang Shenshen, Wang Qing. Finite element analysis of biomechanical characteristics of three internal fixation methods in treatment of inferior patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7048-7054. |
[10] | Xu Xin, Wurikaixi·Aiyiti, Lyu Gang, Maimaiaili·Yushan, Ma Zhiqiang, Ma Chao. Finite element analysis of four different internal fixation methods for complex acetabular double-column fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7063-7071. |
[11] | Liang Cheng, Zhuo Chuanchuan, Zhang Xiaogang, Wang Guan, Duan Ke, Li Zhong, Lu Xiaobo, Zhuo Naiqiang, Jin Zhongmin. Biomechanical characteristics of a novel sacroiliac lag screw [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7080-7086. |
[12] | Ma Shuangshuang, Gao Dedong, Shan Zhongshu, Xu Wenxu, Lu Zhirui. Finite element analysis and biomechanical validation of revision pedicle screw placement [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7087-7095. |
[13] | Yang Yu, Li Yinghao, Duo Zhuangzhi, Zhou Dingrong. Effect of overall functional physical exercise on lumbar biomechanics in patients with lumbar disc herniation after surgery [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7096-7101. |
[14] | Zhang Ziyi, Qin Qi, Alimujiang·Yusufu, Liu Yuzhe, Yusufu·Reheman, Ran Jian. Biomechanical analysis of three internal fixation schemes for Pauwels type III femoral neck fractures in young adults [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7102-7108. |
[15] | Ma Tao, Li Xing, Wei Yajun, Deng Juncai. Effects of lateral screw-rod placement positions on segmental range of motion, internal fixation and cage stress during oblique lumber interbody fusion [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7165-7172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||