[1] 杜鹏飞,樊毫军,赵会民,等.我国紧急输血的可及性与便利性调查[J].中国输血杂志,2021,34(7):738-742. 
[2]	赵冬雁,马宏伟,汤丁洁,等. 2018-2021年COVID-19疫情前后国内18家血液中心红细胞成分血供应情况分析[J].中国输血杂志, 2023,36(10):892-898. 
[3]	刘嘉馨,杨成民.红细胞代用品研究进展与现状[J].中国输血杂志, 2022,35(8):785-790. 
[4]	CAP AP, CANNON JW, READE MC. Synthetic blood and blood products for combat casualty care and beyond. J Trauma Acute Care Surg. 2021; 91(2S Suppl 2):S26-s32. 
[5]	FAGGIANO S, RONDA L, BRUNO S, et al. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med. 2022;84: 101050. 
[6]	MA Y, ZHANG Q, DAI Z, et al. Structural optimization and prospect of constructing hemoglobin oxygen carriers based on hemoglobin. Heliyon. 2023;9(9):e19430. 
[7]	JANSMAN MMT, HOSTA-RIGAU L. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci. 2018;260:65-84. 
[8]	DUBÉ GP, PITMAN AN, MACKENZIE CF. Relative Efficacies of HBOC-201 and Polyheme to Increase Oxygen Transport Compared to Blood and Crystalloids. Shock. 2019;52(1S Suppl 1):100-107. 
[9]	CAO M, ZHAO Y, HE H, et al. New Applications of HBOC-201: A 25-Year Review of the Literature. Front Med (Lausanne). 2021;8:794561. 
[10]	BHATTACHARJEE RN, PATEL SVB, SUN Q, et al. Renal Protection Against Ischemia Reperfusion Injury: Hemoglobin-based Oxygen Carrier-201 Versus Blood as an Oxygen Carrier in Ex Vivo Subnormothermic Machine Perfusion. Transplantation. 2020; 104(3):482-489. 
[11]	SIMONS M, GRETTON S, SILKSTONE GGA, et al. Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers.   Biosci Rep. 2018;38(4):BSR20180370.  
[12]	TATEZAWA R, ABUMIYA T, ITO Y, et al. Neuroprotective effects of a hemoglobin-based oxygen carrier (stroma-free hemoglobin nanoparticle) on ischemia reperfusion injury. Brain Res. 2023;1821: 148592. 
[13]	WANG Q, GONG J, BAI Q, et al. Hemoglobin coated oxygen storage metal-organic framework as a promising artificial oxygen carrier. J Mater Chem B. 2021;9(19):4002-4005. 
[14]	HUI W, MU W, ZHAO C, et al. Solid-Phase Polymerization Using Anion-Exchange Resin Can Almost Completely Crosslink Hemoglobin to Prepare Hemoglobin-Based Oxygen Carriers. Int J Nanomedicine. 2023;18:1777-1791. 
[15]	ROAMCHARERN N, PAYOUNGKIATTIKUN W, ANWISED P, et al. Physicochemical properties and oxygen affinity of glutaraldehyde polymerized crocodile hemoglobin: the new alternative hemoglobin source for hemoglobin-based oxygen carriers. Artif Cells Nanomed Biotechnol. 2019;47(1):852-861. 
[16]	LIANG S, CHEN Y, ZHANG S, et al. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. Sci Total Environ. 2020;711:134493. 
[17]	FARCAS AD, TOMA VA, ROMAN I, et al. Glutaraldehyde-Polymerized Hemoglobin: In Search of Improved Performance as Oxygen Carrier in Hemorrhage Models. Bioinorg Chem Appl. 2020; 2020:1096573. 
[18]	TAGUCHI K, YAMASAKI K, MARUYAMA T, et al. Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J Funct Biomater. 2017;8(1):11. 
[19]	HAFEEZ S, ZAIDI N. Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers. Int J Mol Sci. 2023;24(2):1618. 
[20]	BAIDUKOVA O, WANG Q, CHAIWAREE S, et al. Antioxidative protection of haemoglobin microparticles (HbMPs) by PolyDopamine. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S693-s701. 
[21]	GU X, ALLYN M, SWINDLE-REILLY K, et al. ZIF-8 metal organic framework nanoparticle loaded with tense quaternary state polymerized bovine hemoglobin: potential red blood cell substitute with antioxidant properties. Nanoscale. 2023;15(19):8832-8844. 
[22]	PENG S, LIU J, QIN Y, et al. Metal-Organic Framework Encapsulating Hemoglobin as a High-Stable and Long-Circulating Oxygen Carriers to Treat Hemorrhagic Shock. ACS Appl Mater Interfaces. 2019;11(39): 35604-35612. 
[23]	MUZZELO C, NEELY C, SHAH P, et al. Prolonging the shelf life of Lumbricus terrestris erythrocruorin for use as a novel blood substitute. Artif Cells Nanomed Biotechnol. 2018;46(1):39-46. 
[24]	ZIMMERMAN D, DIIUSTO M, DIENES J, et al. Direct comparison of oligochaete erythrocruorins as potential blood substitutes. Bioeng Transl Med. 2017;2(2):212-221. 
[25]	POZY E, SAVLA C, PALMER AF. Photocatalytic Synthesis of a Polydopamine-Coated Acellular Mega-Hemoglobin as a Potential Oxygen Therapeutic with Antioxidant Properties. Biomacromolecules. 2023;24(5):2022-2029. 
[26]	JANI VP, JELVANI A, MOGES S, et al. Polyethylene Glycol Camouflaged Earthworm Hemoglobin. PLoS One. 2017;12(1):e0170041. 
[27]	荣龙,余春红,任烽,等.一种蚯蚓血红蛋白冻干制剂的制备方法[P].CN116239676A,2021-06-25 
[28]	荣龙,余春红,任烽,等.一种PEG修饰蚯蚓血红蛋白的方法[P].CN116199771A,2023-06-02 
[29]	杨康,赵会民,樊毫军,等.聚多巴胺修饰蚯蚓血红蛋白纳米氧载体的构建及性能检测[J].中国组织工程研究,2022,26(21):3369-3374. 
[30]	杨康,赵会民.血红蛋白氧载体的研究目标及新进展[J].中国组织工程研究,2020,24(20):3263-3268. 
[31]	KRUCZKOWSKA W, KCIUK M, PASIEKA Z, et al. The artificial oxygen carrier erythrocruorin-characteristics and potential significance in medicine. J Mol Med (Berl). 2023;101(8):961-972.  
[32]	TIMM B, ABDULMALIK O, CHAKRABARTI A, et al. Purification of Lumbricus terrestris erythrocruorin (LtEc) with anion exchange chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2020; 1150:122162. 
[33]	SAVLA C, MUNOZ C, HICKEY R, et al. Purification of Lumbricus terrestris Mega-Hemoglobin for Diverse Oxygen Therapeutic Applications. ACS Biomater Sci Eng. 2020;6(9):4957-4968. 
[34]	SAVLA C, PALMER AF. Structural Stability and Biophysical Properties of the Mega-Protein Erythrocruorin Are Regulated by Polyethylene Glycol Surface Coverage. Biomacromolecules. 2021;22(5):2081-2093. 
[35]	SHI D, BEASOCK D, FESSLER A, et al. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180: 114079. 
[36]	RAJESH A, ZIMMERMAN D, SPIVACK K, et al. Glutaraldehyde cross-linking increases the stability of Lumbricus terrestris erythrocruorin. Biotechnol Prog. 2018;34(2):521-528. 
[37]	SHI J, LIAN H, HUANG Y, et al. In vitro genotoxicity evaluation and metabolic study of residual glutaraldehyde in animal-derived biomaterials. Regen Biomater. 2020;7(6):619-625. 
[38]	AHMED R, UL AIN HIRA N, WANG M, et al. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem. 2023;434:137498. 
[39]	YU Y, XU S, LI S, et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci. 2021;9(5):1583-1597. 
[40]	WANG Q, ZHANG R, LU M, et al. Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties. Biomacromolecules. 2017;18(4):1333-1341. 
[41]	HU J, WANG Q, MA N, et al. Characterization and Biosafety Evaluation of Hemoglobin-Based Oxygen Carriers Coated with Polydopamine. J Biomed Nanotechnol. 2020;16(8):1314-1323. 
[42]	EL YAKHLIFI S, BALL V. Polydopamine as a stable and functional nanomaterial. Colloids Surf B Biointerfaces. 2020;186:110719. 
[43]	AIT BACHIR Z, HUANG Y, HE M, et al. Effects of PEG surface density and chain length on the pharmacokinetics and biodistribution of methotrexate-loaded chitosan nanoparticles. Int J Nanomedicine. 2018;13:5657-5671. 
[44]	CHEN BM, CHENG TL, ROFFLER SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano. 2021;15(9):14022-14048. 
[45] SAMAJA M, MALAVALLI A, VANDEGRIFF KD. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes. Int J Mol Sci. 2023;24(19):14902.
  |