Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (21): 4452-4457.doi: 10.12307/2025.155
Previous Articles Next Articles
Wang Lingcheng1, 2, Chen Xi1, 2, Yang Shuoyao1, 2, Huang Zhoulu1, Yang Shunjie1, 2, You Mingke1, 2, Zhou Kai1, 2, Chen Gang1, 2, Li Jian1, 2
Received:
2023-11-01
Accepted:
2024-03-12
Online:
2025-07-28
Published:
2024-12-05
Contact:
Chen Gang, MD, Chief physician, Master’s supervisor, Sports Medicine Center, and Department of Orthopedics and Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
About author:
Wang Lingcheng, MS, Physician, Sports Medicine Center, and Department of Orthopedics and Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
Supported by:
CLC Number:
Wang Lingcheng, Chen Xi, Yang Shuoyao, Huang Zhoulu, Yang Shunjie, You Mingke, Zhou Kai, , Chen Gang, , Li Jian. Effect of periacetabular osteotomy on pelvic sagittal tilt in developmental dysplasia of hip[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4452-4457.
2.1 参与者数量分析 纳入观察对象29例,行自身术前术后对照,无脱落。 2.2 一般资料 此次研究纳入样本29例,男2例,女27例;右髋20例,左髋9例;年龄16-48岁,平均(31.6±9.1)岁;随访时间8-36个月,平均(22.59±8.64)个月。未出现切口感染、骨折、血管损伤等髋臼周围截骨术后相关严重并发症,另外植入物生物相容性良好,未出现免疫及排斥反应。 2.3 影像学测量结果 2.3.1 髋臼覆盖情况 髋臼周围截骨术后6个月,患者髋关节外侧中心边缘角从(11.97±6.02)°增加至(34.47±5.04)°,差异有显著性意义(P < 0.01);通力氏角(tonnis angle)从(14.76±5.24)°下降至(1.73±4.00)°,差异有显著性意义(P < 0.01)。见图3,4及表2。"
2.3.2 骨盆倾斜情况 髋臼周围截骨术后6个月,耻骨联合到骶髂关节连线中点距离从(9.71±1.61) mm增加至(10.86±2.60) mm,差异有显著性意义(P < 0.05);SFP从(68.23±5.68)°增加至(71.07±4.79)°,差异有显著性意义(P < 0.05);骨盆矢状位倾斜也从(6.77±5.68)°下降至(3.93±4.79)°,差异有显著性意义(P < 0.05);术后6个月的耻骨联合到骶髂关节距离与术前无明显差异(P > 0.05)。见图3,4及表2。 2.4 髋关节评分 髋臼周围截骨术后6个月,患者HOOS评分及Harris评分均显著升高,差异有显著性意义(P < 0.01),见图5。 2.5 结果可靠性 术后患者各指标ICC提示此次研究可靠性较为满意,ICC值均在0.643-0.976之间,见表3,但仍存在一定的测量误差。"
[1] SCHMITZ MR, MURTHA AS, CLOHISY JC, et al. Developmental Dysplasia of the Hip in Adolescents and Young Adults. J Am Acad Orthop Surg. 2020;28(3):91-101. [2] HARRIS MD, SHEPHERD MC, SONG K, et al. The biomechanical disadvantage of dysplastic hips. J Orthop Res. 2022;40(6):1387-1396. [3] BIEDERMANN R, RICCABONA J, GIESINGER JM, et al. Results of universal ultrasound screening for developmental dysplasia of the hip: a prospective follow-up of 28 092 consecutive infants. Bone Joint J. 2018;100-B(10):1399-1404. [4] TIAN FD, ZHAO DW, WANG W, et al. Prevalence of Developmental Dysplasia of the Hip in Chinese Adults: A Cross-sectional Survey. Chin Med J (Engl). 2017;130(11):1261-1268. [5] 沈彬,周一新,陈晓东.发育性髋关节发育不良[M].北京: 人民卫生出版社,2020:163-174. [6] STEPPACHER SD, TANNAST M, GANZ R. Mean 20-year followup of Bernese periacetabular osteotomy. Clin Orthop Relat Res. 2008;466(7): 1633-1644. [7] TROUSDALE RT, EKKERNKAMP A, GANZ R, et al. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg Am. 1995;77(1):73-85. [8] LEUNIG M, GANZ R. The Bernese method of periacetabular osteotomy. Orthopade.1998;27(11):743-750. [9] MAYO KA, TRUMBLE SJ, MAST JW. Results of periacetabular osteotomy in patients with previous surgery for hip dysplasia. Clin Orthop Relat Res. 1999;(363):73-80. [10] LARSEN JB, MECHLENBURG I, JAKOBSEN SS, et al. 14-year hip survivorship after periacetabular osteotomy: a follow-up study on 1,385 hips.Acta Orthop. 2020;91(3):299-305. [11] LUM ZC, COURY JG, COHEN JL, et al. The Current Knowledge on Spinopelvic Mobility. J Arthroplasty. 2018;33(1):291-296. [12] BUCKLAND AJ, STEINMETZ L, ZHOU P, et al. Spinopelvic Compensatory Mechanisms for Reduced Hip Motion (ROM) in the Setting of Hip Osteoarthritis. Spine Deform. 2019;7(6):923-928. [13] INNMANN MM, MERLE C, GOTTERBARM T, et al. Can.spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis. Bone Joint J. 2019;101-B(8):902-909. doi:10.1302/0301-620X.101B8. [14] PATEL RV, HAN S, LENHERR C, et al. Pelvic Tilt and Range of Motion in Hips With Femoroacetabular Impingement Syndrome. J Am Acad Orthop Surg. 2020 15;28(10):e427-e432. [15] PIERANNUNZII L. Pelvic posture and kinematics in femoroacetabular impingement: a systematic review. J Orthop Traumatol. 2017;18(3): 187-196. [16] NG KCG, LAMONTAGNE M, JEFFERS JRT, et al. Anatomic Predictors of Sagittal Hip and Pelvic Motions in Patients With a Cam Deformity.Am J Sports Med. 2018;46(6):1331-1342. [17] YANG GY, LI YY, LUO DZ, et al. Differences of Anteroposterior Pelvic Radiographs Between Supine Position and Standing Position in Patients with Developmental Dysplasia of the Hip. Orthop Surg. 2019; 11(6):1142-1148. [18] TACHIBANA T, FUJII M, KITAMURA K, et al. Does Acetabular Coverage Vary Between the Supine and Standing Positions in Patients with Hip Dysplasia? Clin Orthop Relat Res. 2019;477(11):2455-2466. [19] LERCH TD, BOSCHUNG A, SCHMARANZER F, et al. Lower pelvic tilt, lower pelvic incidence, and increased external rotation of the iliac wing in patients with femoroacetabular impingement due to acetabular retroversion compared to hip dysplasia. Bone Jt Open. 2021;2(10): 813-824. [20] ADDAI D, ZARKOS J, PETTIT M, et al. Outcomes following surgical management of femoroacetabular impingement: a systematic review and meta-analysis of different surgical techniques. Bone Joint Res. 2021;10(9):574-590. [21] GRAMMATOPOULOS G, SALIH S, BEAULE PE, et al. Spinopelvic Characteristics in Acetabular Retroversion: Does Pelvic Tilt Change After Periacetabular Osteotomy?Am J Sports Med. 2020;48(1): 181-187. [22] DALEY E, NAHM N, KOUEITER D, et al. Does Compensatory Anterior Pelvic Tilt Decrease After Bilateral Periacetabular Osteotomy? Clin Orthop Relat Res. 2019;477(5):1168-1175. [23] PIERREPONT J, HAWDON G, MILES BP, et al. Variation in functional pelvic tilt in patients undergoing total hip arthroplasty.Bone Joint J. 2017;99-B(2):184-191. [24] PIERREPONT JW, STAMBOUZOU CZ, MILES BP, et al. Patient specific component alignment in total hip arthroplasty. Recon Rev. 2016;6(4). DOI:10.15438/rr.6.4.148. [25] PIERREPONT JW, MAREL E, BARÉ JV, et al. Variation in femoral anteversion in patients requiring total hip replacement. Hip Int. 2020; 30(3):281-287. [26] HAFFER H, ADL AMINI D, PERKA C, et al. The Impact of Spinopelvic Mobility on Arthroplasty: Implications for Hip and Spine Surgeons. J Clin Med. 2020;9(8). pii: E2569. [27] TATEIWA T, ENDO K, MATSUOKA Y, et al. Pelvic tilt after total hip arthroplasty in patients with osteoarthritis of the hip. J Orthop Surg (Hong Kong). 2020;28(2):2309499020918317. [28] BECK M, KALHOR M, LEUNIG M, et al. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87(7):1012-1018. [29] TONNIS D, LEGAL H, GRAF R. Congenital Dysplasia and Disloca- tion of the Hip in Children and Adults. Berlin, Germany: Springer-Verlag; 1987. [30] SIEBENROCK KA, KISTLER L, SCHWAB JM, et al. The acetabular wall index for assessing anteroposterior femoral head coverage in symptomatic patients. Clin Orthop Relat Res. 2012;470(12):3355-3360. [31] TANNAST M, MURPHY SB, LANGLOTZ F, et al. Estimation of pelvic tilt on anteroposterior X-rays--a comparison of six parameters.Skeletal Radiol. 2006;35(3):149-155. [32] TANNAST M, ZHENG G, ANDEREGG C, et al. Tilt and rotation correction of acetabular version on pelvic radiographs. Clin Orthop Relat Res. 2005;438:182-190. [33] THORÉN B, SAHLSTEDT B. Influence of pelvic position on radiographic measurements of the prosthetic acetabular component. An experimental study on a pelvic model. Acta Radiol. 1990;31(2):133-136. [34] BLONDEL B, SCHWAB F, PATEL A, et al. Sacrofemoral-pubic angle: a coronal parameter to estimate pelvic tilt. Eur Spine J. 2012;21(4):719-724. [35] TRATHITIPHAN W, PAHOLPAK P, SIRICHATIVAPEE W, et al. Cross-cultural adaptation and validation of the reliability of the Thai version of the Hip disability and Osteoarthritis Outcome Score (HOOS). Rheumatol Int. 2016;36(10):1455-1458. [36] INNMANN MM, MCGOLDRICK NP, RATRA A, et al. The accuracy in determining pelvic tilt from anteroposterior pelvic radiographs in patients awaiting hip arthroplasty. J Orthop Res. 2022;40(4):854-861. [37] MATSUYAMA Y, HASEGAWA Y, YOSHIHARA H, et al. Hip-spine syndrome: total sagittal alignment of the spine and clinical symptoms in patients with bilateral congenital hip dislocation. Spine (Phila Pa 1976). 2004; 29:2432-2437. [38] ROUSSOT MA, SALIH S, GRAMMATOPOULOS G, et al. What is the pelvic tilt in acetabular dysplasia and does it change following peri-acetabular osteotomy? J Hip Preserv Surg. 2021;7(4):777-785. [39] GRAMMATOPOULOS G, SALIH S, BEAULE PE, et al. Spinopelvic Characteristics in Acetabular Retroversion: Does Pelvic Tilt Change After Periacetabular Osteotomy? Am J Sports Med. 2020;48(1):181-187. [40] OFFIERSKI CM, MACNAB I. Hip-spine syndrome. Spine (Phila Pa 1976). 1983;3:316-321. [41] YANG GY, LI YY, LUO DZ, et al. Differences of Anteroposterior Pelvic Radiographs Between Supine Position and Standing Position in Patients with Developmental Dysplasia of the Hip. Orthop Surg. 2019; 11(6):1142-1148. [42] BUCKLAND AJ, STEINMETZ L, ZHOU P, et al. Spinopelvic Compensatory Mechanisms for Reduced Hip Motion (ROM) in the Setting of Hip Osteoarthritis. Spine Deform. 2019;7(6):923-928. [43] PULLEN WM, HENEBRY A, GASKILL T, et al. Variability of acetabular coverage between supine and weightbearing pelvic radiographs. Am J Sports Med. 2014;42:2643-2648. [44] HENEBRY A, GASKILL T. The effect of pelvic tilt on radiographic markers of acetabular coverage. Am J Sports Med. 2013;41:2599-2603. |
[1] | Ma Chi, Wang Ning, Chen Yong, Wei Zhihan, Liu Fengji, Piao Chengzhe. Application of 3D-printing patient-specific instruments combined with customized locking plate in opening wedge high tibial osteotomy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1863-1869. |
[2] | Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang. Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1913-1922. |
[3] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[4] | Sun Yundi, Cheng Lulu, Wan Haili, Chang Ying, Xiong Wenjuan, Xia Yuan. Effect of neuromuscular exercise for knee osteoarthritis pain and function: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1945-1952. |
[5] | Deng Keqi, Li Guangdi, Goswami Ashutosh, Liu Xingyu, He Xiaoyong. Screening and validation of Hub genes for iron overload in osteoarthritis based on bioinformatics [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1972-1980. |
[6] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[7] | Wang Peiguang, Zhang Xiaowen, Mai Meisi, Li Luqian, Huang Hao. Generalized equation estimation of the therapeutic effect of floating needle therapy combined with acupoint embedding on different stages of human knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1565-1571. |
[8] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[9] | Chen Yueping, Chen Feng, Peng Qinglin, Chen Huiyi, Dong Panfeng . Based on UHPLC-QE-MS, network pharmacology, and molecular dynamics simulation to explore the mechanism of Panax notoginseng in treating osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1751-1760. |
[10] | Yang Zhihang, Sun Zuyan, Huang Wenliang, Wan Yu, Chen Shida, Deng Jiang. Nerve growth factor promotes chondrogenic differentiation and inhibits hypertrophic differentiation of rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1336-1342. |
[11] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[12] | Qian Kun, Li Ziqing, Sun Shui . Endoplasmic reticulum stress in the occurrence and development of common degenerative bone diseases [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1285-1295. |
[13] | Ma Haoyu, Qiao Hongchao, Hao Qianqian, Shi Dongbo. Causal effects of different exercise intensities on the risk of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1305-1311. |
[14] | Xu Tianjie, Fan Jiaxin, Guo Xiaoling, Jia Xiang, Zhao Xingwang, Liu kainan, Wang Qian. Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1003-1012. |
[15] | Wu Guangtao, Qin Gang, He Kaiyi, Fan Yidong, Li Weicai, Zhu Baogang, Cao Ying . Causal relationship between immune cells and knee osteoarthritis: a two-sample bi-directional Mendelian randomization analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1081-1090. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||