Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (13): 2698-2705.doi: 10.12307/2025.079
Previous Articles Next Articles
Zhang Min1, 2, Dong Xixi3, Huang Meng1, 2, Wang Chaoxiang1, 2, Zhang Luyue1, 2, Cao Junkai2
Received:
2024-02-27
Accepted:
2024-05-11
Online:
2025-05-08
Published:
2024-09-11
Contact:
Cao Junkai, Chief physician, Associate professor, Doctoral supervisor, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
About author:
Zhang Min, Master candidate, Medical School of Chinese PLA, Beijing 100853, China; First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
Supported by:
CLC Number:
Zhang Min, Dong Xixi, Huang Meng, Wang Chaoxiang, Zhang Luyue, Cao Junkai. Effect of rotating cell culture system on proliferation and stemness maintenance of epidermal stem cells in the elderly[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(13): 2698-2705.
2.1 儿童和老年人表皮干细胞的形态学观察和细胞免疫荧光鉴定结果 如图1A所示,儿童组和老年组表皮干细胞形态无明显差异,均呈边缘透亮的多边形细胞形态,细胞核较大,细胞排列紧密呈铺路石样。在老年组中小而紧密的细胞之间,夹杂着一些大而扁平的细胞。原代细胞长至融合时,对儿童组和老年组表皮干细胞的特异性标记物CK19、Integrin-β1和p63进行细胞免疫荧光鉴定,如图1B所示,3个标记物均强表达,且儿童组几乎全部表达。结合细胞学形态观察,实验成功分离培养了老年人和儿童表皮干细胞。 2.2 平面培养的儿童和老年人表皮干细胞的增殖情况 如图2A所示,儿童组第1代细胞中有65.3%表达CD49fbri/CD71dim,29.8%表达CD49fbri/CD71bri,老年组则有31.7%表达CD49fbri/CD71dim,63.7%表达CD49fbri/CD71bri。经统计分析,两组细胞CD49fbri/CD71dim表达率差异有显著性意义(P < 0.01),见图2B。以上结果表明,传代后细胞的干性表达有所降低,但儿童组仍较老年组具有更强的增殖能力,老年组增殖能力较弱。如图2C所示,CCK-8检测发现儿童组第1代表皮干细胞在第1,3,5,7天时的增殖能力均高于老年组,差异有显著性意义(P < 0.05)。两组第1代细胞在接种相同细胞数的情况下,儿童组可在7 d达到约90%的细胞融合,而老年组则需12 d,细胞增殖速度明显较慢。 2.3 平面培养的儿童和老年人表皮干细胞克隆形成能力 为了进一步检验两组细胞增殖能力的差异,对儿童组第3代表皮干细胞和老年组第1代表皮干细胞进行了细胞克隆形成实验。如图3所示,老年组表皮干细胞形成的细胞克隆小而稀疏,而儿童组在第3代仍可形成远大于老年人的细胞克隆。经统计分析,儿童组第3代表皮干细胞克隆形成效率大于老年组第1代表皮干细胞,具有更强的细胞克隆能力。"
[1] VIETRI RUDAN M, WATT FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol. 2022;12:804824. [2] YANG R, YANG S, ZHAO J, et al. Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Res Ther. 2020;11(1):303. [3] MESA KR, KAWAGUCHI K, COCKBURN K, et al. Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation. Cell Stem Cell. 2018;23(5):677-686.e4. [4] WANG J, CHEN Y, HE J, LI G, et al. Anti-Aging Effect of the Stromal Vascular Fraction/Adipose-Derived Stem Cells in a Mouse Model of Skin Aging Induced by UVB Irradiation. Front Surg. 2022;9:950967. [5] DOSHIDA Y, SANO H, IWABUCHI S, et al. Age-associated changes in the transcriptomes of non-cultured adipose-derived stem cells from young and old mice assessed via single-cell transcriptome analysis. PLoS One. 2020;15(11):e0242171. [6] GE Y, MIAO Y, GUR-COHEN S, et al. The aging skin microenvironment dictates stem cell behavior. Proc Natl Acad Sci U S A. 2020;117(10): 5339-5350. [7] RÜBE CE, BÄUMERT C, SCHULER N, et al. Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. NPJ Aging Mech Dis. 2021;7(1):7. [8] GIANGRECO A, QIN M, PINTAR JE, et al. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7(2):250-259. [9] ZOUBOULIS CC, ADJAYE J, AKAMATSU H, et al. Human skin stem cells and the ageing process. Exp Gerontol. 2008;43(11):986-997. [10] HABANJAR O, DIAB-ASSAF M, CALDEFIE-CHEZET F, et al. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci. 2021;22(22):12200. [11] VOLLMERS A, WALLACE L, FULLARD N, et al. Two- and three-dimensional culture of keratinocyte stem and precursor cells derived from primary murine epidermal cultures. Stem Cell Rev Rep. 2012;8(2): 402-413. [12] CUI Y, YIN Y, ZOU Y, et al. The Rotary Cell Culture System increases NTRK3 expression and promotes neuronal differentiation and migratory ability of neural stem cells cultured on collagen sponge. Stem Cell Res Ther. 2021;12(1):298. [13] NEWLAND B, EHRET F, HOPPE F, et al. Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers. MethodsX. 2020;7:100805. [14] GRIMM D, WEHLAND M, CORYDON TJ, et al. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl Med. 2020;9(8):882-894. [15] LIU D, PAVATHUPARAMBIL ABDUL MANAPH N, AL-HAWWAS M, et al. Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev. 2020;29(8):463-474. [16] OYEN BL, HSIEH CC, HSU PJ, et al. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med. 2023;12(5):235-244. [17] LEI XH, NING LN, CAO YJ, et al. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One. 2011;6(11): e26603. [18] YAN X, ZHANG K, YANG Y, et al. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Tissue Eng Part C Methods. 2020;26(5):263-275. [19] WANG B, LIU W, LI JJ, et al. A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioact Mater. 2021;7:478-490. [20] ZHANG Y, NA T, ZHANG K, et al. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs. J Tissue Eng Regen Med. 2022;16(10):934-944. [21] GIBLER P, GIMBLE J, HAMEL K, et al. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells. 2021;10(6):1378. [22] LEGIAWATI L, SUSENO LS, SITOHANG IBS, et al. Stem Cells as a Therapeutic Choice in Dermatological Disorders. Curr Stem Cell Res Ther. 2023;18(8):1069-1075. [23] ZHAO X, LI X, WANG Y, et al. Stability and biosafety of human epidermal stem cell for wound repair: preclinical evaluation. Stem Cell Res Ther. 2023;14(1):4. [24] GONZALES KAU, FUCHS E. Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Dev Cell. 2017;43(4):387-401. [25] CHERMNYKH E, KALABUSHEVA E, VOROTELYAK E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci. 2018;19(4): 1003. [26] TJIN MS, CHUA AWC, TRYGGVASON K. Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices. Nat Protoc. 2020;15(2):694-711. [27] NANBA D. Human keratinocyte stem cells: From cell biology to cell therapy. J Dermatol Sci. 2019;96(2):66-72. [28] FLORA P, EZHKOVA E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development. 2020;147(22):dev194100. [29] LI A, SIMMONS PJ, KAUR P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A. 1998;95(7):3902-3907. [30] NANBA D, TOKI F, TATE S, et al. Cell motion predicts human epidermal stemness. J Cell Biol. 2015;209(2):305-315. [31] PICERNO A, STASI A, FRANZIN R, et al. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells. 2021;13(11):1714-1732. [32] ANIL-INEVI M, SARIGIL O, KIZILKAYA M, et al. Stem Cell Culture Under Simulated Microgravity. Adv Exp Med Biol. 2020;1298:105-132. [33] AL-AZAB M, SAFI M, IDIIATULLINA E, et al. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett. 2022;27(1):69. [34] BARRANDON Y, GRASSET N, ZAFFALON A, et al. Capturing epidermal stemness for regenerative medicine. Semin Cell Dev Biol. 2012;23(8): 937-944. [35] MAJOR GS, DOAN VK, LONGONI A, et al. Mapping the microcarrier design pathway to modernise clinical mesenchymal stromal cell expansion. Trends Biotechnol. 2024. doi: 10.1016/j.tibtech.2024.01.001. [36] CASAJUANA ESTER M, DAY RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics. 2023;15(2):663. [37] ZHANG Y, GAO S, LIANG K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs. Sci Adv. 2021;7(27):eabi4379. [38] ZHANG J, LI C, MENG F, et al. Functional tissue-engineered microtissue formed by self-aggregation of cells for peripheral nerve regeneration. Stem Cell Res Ther. 2022;13(1):3. [39] LIU Y, WANG R, DING S, et al. Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers. Biomaterials. 2022;287:121615. [40] BOONEKAMP KE, KRETZSCHMAR K, WIENER DJ, et al. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A. 2019;116(29):14630-14638. [41] MARCHINI A, GELAIN F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol. 2022;42(3):468-486. [42] FOGLIETTA F, CANAPARO R, MUCCIOLI G, et al. Methodological aspects and pharmacological applications of three-dimensional cancer cell cultures and organoids. Life Sci. 2020;254:117784. [43] TSAI AC, JESKE R, CHEN X, et al. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol. 2020;8:640. [44] AYVAZ I, SUNAY D, SARIYAR E, et al. Three-Dimensional Cell Culture Models of Hepatocellular Carcinoma - a Review. J Gastrointest Cancer. 2021;52(4):1294-1308. |
[1] | Li Jun, Gong Jingjing, Sun Guobin, Guo Rui, Ding Yang, Qiang Lijuan, Zhang Xiaoli, Fang Zhanhai . miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by regulating mitogen-activated protein kinase signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1609-1617. |
[2] | Chi Wenxin, Zhang Cunxin, Gao Kai, Lyu Chaoliang, Zhang Kefeng. Mechanism by which nobiletin inhibits inflammatory response of BV2 microglia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1321-1327. |
[3] | Hu Taotao, Liu Bing, Chen Cheng, Yin Zongyin, Kan Daohong, Ni Jie, Ye Lingxiao, Zheng Xiangbing, Yan Min, Zou Yong. Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1343-1349. |
[4] | Jin Kai, Tang Ting, Li Meile, Xie Yuan. Effects of conditioned medium and exosomes of human umbilical cord mesenchymal stem cells on proliferation, migration, invasion, and apoptosis of hepatocellular carcinoma cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1350-1355. |
[5] | Liu Qi, Li Linzhen, Li Yusheng, Jiao Hongzhuo, Yang Cheng, Zhang Juntao. Icariin-containing serum promotes chondrocyte proliferation and chondrogenic differentiation of stem cells in the co-culture system of three kinds of cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1371-1379. |
[6] | Niu Yongkang, Feng Zhiwei, Wang Yaobin, Liu Zhongcheng, Xiang Dejian, Liang Xiaoyuan, Yi Zhi, Zhan Hongwei, Geng Bin, Xia Yayi. Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 908-916. |
[7] | Liu Chengyuan, Guo Qianping. Differential effects of kartogenin on chondrogenic and osteogenic differentiation of rat and rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7490-7498. |
[8] | Fang Yuan, Qian Zhiyong, He Yuanhada, Wang Haiyan, Sha Lirong, Li Xiaohe, Liu Jing, He Yachao, Zhang Kai, Temribagen. Mechanism of Mongolian medicine Echinops sphaerocephalus L. in proliferation and angiogenesis of vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7519-7528. |
[9] | Shi Tongtong, Deng Rongxia, Zhang Jianguang. Differences in physicochemical properties and collagen secretion stimulation of natural and synthetic hydroxyapatite particles [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7278-7285. |
[10] | Yin Hang, Song Kui. Effect of crocin hydrogel on chondrocytes and MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7293-7300. |
[11] | Shao Xuekun, Shi Dianhua, Ding Zhiping, Qiu Zhuoya, Wang Ping, Wang Yi, Wang Cheng, Ding Xiaoyan, Sun Tiefeng. Calcined deer antler slices promote proliferation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6601-6608. |
[12] | Lin Shuqian, Zhao Xilong, Gao Jing, Pan Xinghua, Li Zian, Ruan Guangping. Comparison of biological characteristics of mouse bone marrow mesenchymal stem cells after interference and overexpression of telomere Cajal body protein-1 [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6616-6624. |
[13] | Wang Zhaoyan, Wang Qian, Liu Weipeng, Yang Hui, Luan Zuo, Qu Suqing. Effect of fibronectin on differentiation of human neural stem cells into oligodendrocyte precursor cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6661-6666. |
[14] | Kang Linzhi, Liu Zhenshuai, Wei Jiaxu, Chang Na, Zhu Dacheng. Inhibitory effects of sinomenine hydrochloride in T-cell acute lymphoblastic leukemia CEM cells and transcriptomic analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6674-6680. |
[15] | Liu Haowen, Qiao Weiping, Meng Zhicheng, Li Kaijie, Han Xuan, Shi Pengbo. Regulation of osteogenic effects by bone morphogenetic protein/Wnt signaling pathway: revealing molecular mechanisms of bone formation and remodeling [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 563-571. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||