Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (3): 428-432.doi: 10.3969/j.issn.2095-4344.2017.03.019
Previous Articles Next Articles
He Xue-feng, Xiong Ai-bing
Revised:
2016-12-20
Online:
2017-01-28
Published:
2017-03-14
Contact:
Xiong Ai-bing, Professor, Chief physician, Master’s supervisor, Department of Burn and Plastic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
About author:
He Xue-feng, Studying for master’s degree, Department of Burn and Plastic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
CLC Number:
He Xue-feng, Xiong Ai-bing. Application and research progress of three-dimensional printing in the field of orthopaedics [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(3): 428-432.
2.1 颅颌面骨重建 肿瘤、创伤、炎症或先天畸形等多种因素均可破坏颅颌面骨的连续性及完整性,从而导致颅颌面部外观异常或功能障碍。传统修复方法主要包括骨移植和骨替代品植入,但颌面部解剖结构复杂,个体差异明显,标准化骨替代品无法与每个患者高度贴合,易造成植入物功能受限和使用寿命偏短等问题。自体骨移植往往手术耗时长,易发生术区感染、疼痛等并发症,术后外观恢复较差[3]。因此3D打印技术的出现弥补了传统术式的缺点和不足,目前该技术在颅颌面骨修复重建的应用已逐步趋于成熟。 3D打印技术最大的特点在于定制个性化植入物。以下颌骨为例,重建时不仅要考虑患者颜面形态美观,同时更要精确地构建面下部的解剖标志以及牙列和牙咬合关系,恢复呼吸、语言、吞咽、咀嚼等基本生理功能,从而提高患者的生存质量[4]。2011年,全世界第一例3D打印下颌骨移植术成功开展,首先要对建模部位进行CT 扫描,并将所得数据以特定格式导出用于三维重建;通过软件设置使低密度的肌肉和软组织从高密度的骨组织中分离出来,再利用“蒙板设计”去除内部空腔;将上述完成的数字化的导航模版文件输入快速成型机,使用高分子材料,利用光固化成型技术(SLA)或熔融沉积成型技术(FDM)将数字化个体导航模板制作出来,从而形成骨实物模型。在本例个案中,基于患者(侵袭性骨髓炎)自体下颌骨的测量数据,由钛材料制作出完整的下颌骨代替品;再通过手术将该替代品与自身骨和肌肉进行连接,完成下颌骨重建,该替代品能够完美匹配患者自身颅颌面构造,手术取得了巨大成功[5]。 随着材料学和生物技术的发展,目前已经出现很多具有生物相容性的人工材料,这些材料可在体内安全降解,同时能模拟人体组织本身的化学和生物特性,弥补了传统材料的诸多不足[6-7]。以聚醚酮酮为例,其不仅具有生物相容性,并可在体内引导成骨细胞沉积,并与最终形成的正常骨细胞黏附整合为一体。目前Oxford Performance Materials公司已经获得授权,可以将该材料用于颅颌面骨替代品的打印制作。而生物活性材料的出现为3D打印原料提供了更好的选择,以生物活性物质作为植入物的主体支架,其内的孔隙为种植细胞的增殖和分化提供适宜的环境[8],在将患者自体骨髓或脂肪组织干细胞植入支架后[9-11],最终可培育形成新生骨。这种骨替代品具有良好的生物相容性,可与人体正常组织整合,同时使用寿命长、术后并发症少,应用前景十分乐观。 美国华盛顿大学和维克森林再生研究所采用上述方法在动物体内进行3D打印物的植入试验,并对最终形成的“骨组织”进行评估检测,发现其与正常骨组织的密度相当,并可模拟正常骨组织的生物化学特性[12-16]。3D生物打印骨替代品可精确复制原始模型,同时可与人体正常组织整合,能在保证使用寿命的前提下,更好的改善功能和外观。但该技术目前处于动物试验阶段,其在人体应用的安全性及适用范围尚待进一步研究确认。 2.2 耳和鼻再造 因外伤、肿瘤或先天性发育不全引起的耳鼻缺损或畸形,会对容貌造成极大的影响,严重影响患者的生活质量。过去通常使用软组织扩张器联合自体软骨或人工假体进行修复重建,但术后外形恢复不理想,且易出现感染、机体排斥反应等并发症。 目前使用3D打印定制个性化耳鼻假体技术已较为成熟。经过摄影测量设备采集数据后,利用便携台式3D打印机,在短时间内便能完成高质量硅胶软性假体制作[17-18],与传统假体相比,3D打印使用的纳米复合材料,在耐用度及外观色泽等方面都拥有巨大的优势。 与此同时,目前世界上有很多知名大学及科研组织都致力于将组织工程成果运用于软骨组织再生,进而实现耳鼻的软骨重建。美国康内尔大学采用与3D骨组织打印类似的方法,以患者耳郭为模板,将异种胶原质及成软骨细胞制成高密度水凝胶,并通过打印机形成软骨框架,经培育后凝胶中的活细胞逐渐替代胶原成分,发育成为具有生物活性的耳软骨组织,外形与原始耳郭基本保持一致[19]。同时科学家们尝试将同样的技术运用于关节软骨、气管、脊髓及鼻软骨等其他人体器官或组织的打印制作[20]。 美国维克森林再生医学研究所的科学家们尝试使用杂交融合技术,将水凝胶与静电纺丝共同形成软骨支架,提高支架稳定性的同时,保证其具有一定的柔韧度,可使人成软骨细胞细胞的生长发育不受影响。在大鼠试验中,其培育形成的软骨组织,机械性能及细胞结构成分均与人体软骨组织相似,应用前景十分乐观[21-22]。 在亚洲国家中,韩国已率先在软骨再生研究方向取得一定进展,其使用人工PCL材料构建植入物支架,其内填充成纤维细胞及软骨细胞,并将其植入在兔鼻背上。经过培育所得软骨组织,其细胞构成及性质与人体软骨组织基本相同[23]。 而英国伦敦大学学院则采用更为轻质的人工材料作为支架,其内填充成软骨细胞后被埋植在患者手臂皮下组织内,经过一段时间的生长,待软骨组织基本成形后,将其取出通过手术移植到患者身上[24]。目前在英国和印度等国家,该技术已经进入临床试验阶段,若结果理想,很多先天性耳鼻畸形如无耳畸形和小耳畸形患者均能得到有效治疗。 2.3 皮肤打印 皮肤是烧伤、创伤等过程中最先损伤的器官,大面积皮肤缺损会导致体液丧失,进而引起低蛋白血症、水电解质紊乱,甚至出现严重感染等,而皮肤移植是解决这一问题的关键。由于自体/异体皮肤来源和应用受到限制,科学家们一直在寻找理想的皮肤替代物,目前应用较多的组织工程皮肤,由于缺乏表皮或者真皮成分的支持,移植后容易出现感染和瘢痕挛缩等并发症,并没有真正实现皮肤的重建,因此目前最佳的皮肤替代物依然是自体皮片。 而3D打印皮肤的出现,给皮肤替代物的研究提供了新的方向。通过3D扫描仪对皮肤的组织层次以及特定细胞的位置进行测量记录,并以此合成人工皮肤,可用于临时覆盖创面[25-27]。 英国利物浦大学和曼彻斯特大学正合力研发一种高分辨率扫描及摄像系统,该扫描仪可以更准确地收集诸如皮肤纹路、皮下血管、色素沉着等皮肤特征,从而更好地模拟患者皮肤的颜色和质地。这些特征对面部皮肤移植显得尤为重要。 在美国维克森林再生医学研究所的试验中,其使用喷墨打印机在患者创面内进行细胞成分高速堆积,打印时两个阀门交替开放,一个喷出凝血酶,另一个喷出细胞、胶原蛋白和纤维蛋白原组成的混合物,直接在创面进行“皮肤打印”,完成创面的修复。这种方式可促进细胞在创面内逐层有序沉积,同时保持完整细胞活性和功能[28]。 而加拿大多伦多大学研发出一种3D生物打印机,可以自主选择打对各层次不同细胞的打印,通过使用患者自体角质形成细胞和成纤维细胞,逐层堆积制作出水凝胶生物活性复合物,同时保证细胞的连续性和完整性。很好地还原了正常皮肤的表皮以及真皮结构。 另有一款名为PrintAlive3D的生物打印机,可直接从墨阀中片喷出水凝胶(凝胶由生物聚合物、角质形成细胞和成纤维细胞混合而成),并将其打印成类似于蜂窝形状的模型结构,以模仿实际皮肤的组织层次[29]。 3D皮肤打印通常采用自体角质形成细胞及成纤维细胞成分,有研究从羊水中提取胚胎干细胞,并以此培育出完整的皮肤组织,这也为器官打印研究提供了方向[30]。目前,3D打印皮肤仍存在较多缺陷,其韧性及机械性能同正常在体皮肤仍有较大差距,也不具有毛囊、血管、汗腺等皮肤附属器官,同时缺乏黑色素细胞、朗格罕氏细胞等成分。因此,建立与正常皮肤结构和功能相近的人工皮肤,同时包含皮肤的附属器官,这是皮肤3D打印及生物组织工程下一步需要攻克的难题。 2.4 乳房整形与重建 乳腺癌是女性发病率最高的恶性肿瘤[31],患者在接受乳腺癌手术后通常会因失去乳房,承受生理和心理的双重打击,产生自卑、抑郁等不良情绪进而影响其生活质量[32]。乳房整形重建手术能满足其恢复完美躯体的愿望,而如何重塑一个完美的乳房是整形医生和患者共同关心的问题。 在进行乳房重建前,首先精确测量双乳的各个美学指标,如位置、体积、乳房高度、乳头乳晕复合体的位置等,是保证术后乳房形态自然美观的必要前提。通过CT或MRI三维成像测量的结果较为准确,并可完成对双乳对称性的估测和调整。另外通过建立3D打印实物模型,可通过触摸反馈进行手术指导[33-35]。 乳房重建可分为自身组织移植重建、假体置入重建及自体组织与假体联合重建几种方式。乳腺癌术后乳房缺失患者主要利用自体组织联合假体进行重建,手术前可利用三维成像完成血管情况的评估,并进行深层腹壁下血管穿支皮瓣(DIEP皮瓣)及部分筋膜法横行腹直肌肌皮瓣(TRAM皮瓣)具体手术方式及范围的设计[36]。 有调查结果显示,超过百分之八十的女性都存在肉眼可见的双侧乳房不对称,除了单纯的乳房大小、形状不一以外,还可能同时合并乳头、乳晕复合体的不对称[37-39]。而如果对原本已经存在不对称的乳房进行整形手术,即使在术前已经进行适当的调整,术后的效果可能也不够理想。有数据表明,很大一部分患者在隆胸术后由于不满意乳房不对称,而选择取出假体[40]。因此采用合理的方式对乳房不对称进行评估,是保证术后乳房外形对称美观的前提。通过采用术前三维成像,可以对软组织或胸壁骨骼形状的变异进行估测,从而可为患者所使用假体进行量身定制[41]。 利用3D打印技术进行假体的制作,可通过密度分层堆积实现体积和形状的精确控制。密度分层堆积使基底更加稳固,同时保证假体内容物与胸壁的韧带分布相匹配,从而为假体提供向上的提拉力,保证乳房微微外倾、上挺的状态。美国德克萨斯大学与TeVido生物器材公司合作,使用3D打印机制作出乳房及乳头乳晕复合物假体,并成功用于乳腺癌术后乳房的重建,极大地降低了术后并发症的发生率,同时术后外观自然美观,患者满意度高[42-43]。 目前澳大利亚昆士兰科技大学目前正全力研发一种生物可吸收性乳房支架[44]。该支架以MRI三维重建数据为模板,经过3D打印制作后被置入乳房内,经过2至3年时间,乳房自身的脂肪组织再生并堆积在支架内,从而能实现乳房重建,而支架也将在这段时间里自行降解。 新近出现的生物假体利用可吸收生物基质为支架,其内植入自体腹部脂肪细胞,可根据实际需求进行大小形状调整。同时假体内具有微脉管系统,可为脂肪细胞的存活提供氧气和营养物质,这也解决了传统脂肪移植术后脂肪细胞不易存活的难题。目前该理论还处于动物试验阶段,现阶段需要解决的主要问题是,如何使生物假体置入后乳房外观自然,同时保证内在结构稳固坚实,避免短时间内出现乳房下垂等情况。"
[1] Cohen A,Laviv A,Berman P,et al.Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2009;108(5) :661 -666.[2] Stoker NG, Mankovith NJ, Valentino D. Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg.1992;50(5): 466-471.[3] Brydone AS, MeekD, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010; 224:1329-1343.[4] 孙坚,沈毅,李军,等.腓骨肌(皮)瓣平行折叠结合人工关节重建下颌骨缺损[J].中国口腔颌面外科杂志, 2007, 5(4): 48-51.[5] Nickels L. World’s first patient-specific jaw implant. Metal Powder Rep. 2012; 67: 12-14.[6] Lam CXF, Hutmacher DW, Schantz JT, et al. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A.2009; 90A: 906-919.[7] Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010; 35: 1217-1256.[8] Son J, Kim G. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces. J Biomater Sci Polym Ed.2009;14: 2089-2101.[9] Petrochenko PE, Torgersen J, Gruber P, et al.Laser 3D printing with submicroscale resolution of porous elastomeric scaffolds for supporting human bone stem cells. Adv Healthc Mater. 2015; 4: 739-747.[10] Pati F, Song TH, Rijal G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015; 37: 230-241.[11] Castilho M, Moseke C, Ewald A, et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication.2014; 6: 015006.[12] Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces.2014; 6: 9955-9965.[13] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3Dprinting. Mater Today. 2013; 16: 496-504.[14] Fielding G,Bose S.SiO2 and ZnO dopants in three-dimensionally printedtricalcium phosphate bone tissue engineering scaffolds enhance osteogenesisand angiogenesis in vivo. Acta Biomater.2013; 9: 9137-9148.[15] Tarafder S,DaviesNM,Bandyopadhyay A,et al. 3D printed tricalcium phosphatebone tissue engineering scaffolds: effect of SrO andMgO doping on in vivo osteogenesisin a rat distal femoral defect model. Biomater Sci.2013; 1: 1250-1259.[16] De Coppi P, Bartsch G, SiddiquiMM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol.2007; 25: 100-106.[17] Erickson B, Chao D, Grace L, et al. Rapid and cost-effective orbital prosthesis fabrication via automated non-contact facial topography mapping and 3-D printing. Am Soc Opththalmic Plast Reconstruct Surg.2014.[18] He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep.2014; 4: 6973.[19] Reiffel AJ, Kafka C, Hernandez KA, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013; 8: e56506.[20] Markstedt K, Mantas A,Tournier I,et al.3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015; 16: 1489-1496.[21] Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication.2012; 5: 015001.[22] Visser J,Melchels FP,Jeon JE,et al.Reinforcement of hydrogels using threedimensionally printed microfibres.Nat Commun.2015; 6: 6933.[23] Kim YS, ShinYS, Park doY, et al.The application of three-dimensional printing in animal model of augmentation rhinoplasty. Ann Biomed Eng. 2015;43:2153-2162.[24] Lee CH, Rodeo SA, Fortier LA, et al.Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med.2014; 6: 266ra171.[25] Rimann M, Graf-Hausner U.Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol.2012; 23: 803-809.[26] Lee W,Debasitis JC,Lee VK,et al.Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009; 30: 1587-1595.[27] Rimann M, Bleisch M, Kuster M, et al. Organomimetic skin model production based on novel bioprinting technology. CTI Medtech Event. 2011.[28] Keriquel V, Guillemot F, Arnault I, et al.In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication.2010; 2: 014101.[29] Lee V,Singh G,Trasatti JP,et al.Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods.2014; 20(6): 473-484.[30] Cheng X, Yoo JJ, Hale RG. Biomask for skin regeneration. Regen Med.2014;9:245-248.[31] Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin.2011;61( 2) : 69-90. [32] Youl PH, Baade PD, Aitken JF, et al. A multilevel investigation of inequalities in clinical and psychosocial outcomes for women after breast cancer. BMC Cancer.2011;11: 415.[33] Chae MP, Hunter-Smith DJ, Spychal RT, et al. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat.2014; 146: 457-460.[34] Henseler H, Smith J, Bowman A,et al.Subjective versus objective assessment of breast reconstruction. J Plast Reconstr Aesthet Surg.2013; 66: 634-639.[35] Xi W, Perdanasari AT, Ong Y,et al.Objective breast volume, shape and surface area assessment: a systematic review of breast measurement methods. Aesthetic Plast Surg. 2014; 38: 1116-1130.[36] Pacifico MD, See MS, Cavale N, et al. Preoperative planning for DIEP breast reconstruction: early experience of the use of computerised tomography angiography with VoNavix 3D software for perforator navigation. J Plast Reconstr Aesthet Surg. 2009; 62: 1464–1469.[37] DeLuca-Pytell D, Piazza R, Holding J, et al. The incidence of tuberous breast deformity in asymmetric and symmetric mammaplasty patients. 2005;116(7):1894-1899; discussion 1900-1901.[38] Rohrich RJ, Hartley W, Brown S. Incidence of breast and chest wall asymmetry in breast augmentation: a retrospective analysis of 100 patients. Plast Reconstr Surg. 2006; 118; (7 suppl): 7S-13S.[39] Khan UD. Breast and chest asymmetries: classification and relative distribution of common asymmetries in patients requesting augmentation mammoplasty. Eur J Plast Surg. 2010; 34: 375-385.[40] Grewal NS, Fisher J. Why do patients seek revisionary breast surgery? Aesthet Surg J. 2013; 33: 237-244.[41] Rengier F, Mehndiratta A. 3D printing based on imaging data: reviewof medical applications. Int J Comput Assist Radiol Surg. 2010; 5: 335-341.[42] EvansKK, Rasko Y, Lenert J, et al. The use of calciumhydroxylapatite for nipple projection after failed nipple-areolar reconstruction. Ann Plast Surg. 2005; 55: 25-29.[43] Yanez M, Rincon J, Cortez P, et al.Printable cellular scaffold using self-crosslinking agents.J Imaging Sci Technol.2012; 56: 1-5.[44] Bita N. Absolutely bio-fabulous: ‘bioprinting’to regrow damaged body parts. Australian. 2014. |
[1] | Shi Bin, An Jing, Chen Long-gang, Zhang Nan, Tian Ye . Influencing factors for pain after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 993-997. |
[2] | Wang Xian-xun. Impact of local compression cryotherapy combined with continuous passive motion on the early functional recovery after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 998-1003. |
[3] | Yuan Wei, Zhao Hui, Ding Zhe-ru, Wu Yu-li, Wu Hai-shan, Qian Qi-rong. Association between psychological resilience and acute mental disorders after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1015-1019. |
[4] | Chen Qun-qun, Qiao Rong-qin, Duan Rui-qi, Hu Nian-hong, Li Zhao, Shao Min. Acu-Loc®2 volar distal radius bone plate system for repairing type C fracture of distal radius [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1025-1030. |
[5] | Huang Xiang-wang, Liu Hong-zhe. A new low elastic modulus of beta titanium alloy Ti2448 spinal pedicle screw fixation affects thoracic stability: biomechanical analysis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1031-1035. |
[6] | Xie Qiang. Three-dimensional finite element model for biomechanical analysis of stress in knee inversion and external rotation after posterior cruciate ligament rupture [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1036-1040. |
[7] | He Ze-dong, Zhao Jing, Chen Liang-yu, Li Ke, Weng Jie. Multilevel finite element analysis on the biological tribology damage of water on bone tissue [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1041-1045. |
[8] | Jiang Zi-wei, Huang Feng, Cheng Si-yuan, Zheng Xiao-hui, Sun Shi-dong, Zhao Jing-tao, Cong Hai-chen,Sun Han-qiao, Dong Hang. Design and finite element analysis of digital splint [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1052-1056. |
[9] | Wang Fei, Liu Zhi-bin, Tao Hui-ren, Zhang Jian-hua, Li Chang-hong, Cao Qiang, Zheng Jun, Liu Yan-xiong, Qu Xiao-peng. Clinical efficacy of preoperative osteotomy designs using paper-cut technology versus photoshop software for ankylosing spondylitis with kyphosis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1057-1063. |
[10] | Li Hui, Ma Jun-yi, Ma Yuan, Zhu Xu . Establishment of a three-dimensional finite element model of ankylosing spondylitis kyphosis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1069-1073. |
[11] | Ling Guan-han, Ou Zhi-xue, Yao Lan, Wen Li-chun, Wang Guo-xiang, Lin Heng-feng. Establishment of simulating three-dimensional model of China-Japan Friendship Hospital Classification for L type osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1074-1079. |
[12] | Fu Wei-min, Wang Ben-jie. Assessing the degree of necrotic femoral head, and association of blood supply with pathlogical changes: study protocol for a diagnostic animal trial [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1086-1091. |
[13] | Zhang Wen-qiang, Ding Qian, Zhang Na. Associations between alpha angle and herniation pit on oblique axial magnetic resonance imaging in asymptomatic hip joints of adults [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1098-1103. |
[14] | Sun Xiao-xin1, Zhou Wei2, Zuo Shu-ping3, Liu Hao1, Song Jing-feng1, Liang Chun-yu1. Morphological characteristics for the magnetic resonance imaging assessment of discoid lateral meniscal tears in children [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1104-1109. |
[15] | Lin Han-wen, Wen Jun-mao, Huang Chao-yuan, Zhou Chi, Tang Hong-yu. Correlation between the changes in lower limb power line and pain area in the knee osteoarthritis patients: imaging evaluation [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1110-1114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||