[1] VILLA JM, PANNU TS, THEEB I, et al. International Organism Profile of Periprosthetic Total Hip and Knee Infections. J Arthroplasty. 2021; 36(1):274-278.
[2] BAERTL S, RUPP M, KERSCHBAUM M, et al. The PJI-TNM classification for periprosthetic joint infections. Bone Joint Res. 2024;13(1):19-27.
[3] TANDE AJ, PATEL R. Prosthetic joint infection. Clin Microbiol Rev. 2014; 27(2):302-345.
[4] SUKHONTHAMARN K, STRONY JT, PATEL UJ, et al. Distal Femoral Replacement and Periprosthetic Joint Infection After Non-Oncological Reconstruction: A Retrospective Analysis. J Arthroplasty. 2021;36(12): 3959-3965.
[5] IANNOTTI F, PRATI P, FIDANZA A, et al. Prevention of Periprosthetic Joint Infection (PJI): A Clinical Practice Protocol in High-Risk Patients. Trop Med Infect Dis. 2020;5(4):186.
[6] RUPP M, WALTER N, BÄRTL S, et al. Fracture-Related Infection-Epidemiology, Etiology, Diagnosis, Prevention, and Treatment. Dtsch Arztebl Int. 2024;121(1):17-24.
[7] TARABICHI S, PARVIZI J. Prevention of surgical site infection: a ten-step approach. Arthroplasty. 2023;5(1):21.
[8] KAPADIA BH, BERG RA, DALEY JA, et al. Periprosthetic joint infection. Lancet. 2016;387(10016):386-394.
[9] ZARDI EM, FRANCESCHI F. Prosthetic joint infection. A relevant public health issue. J Infect Public Health. 2020;13(12):1888-1891.
[10] ZHAO B, DONG Y, SHEN X, et al. Construction of multifunctional coating with cationic amino acid-coupled peptides for osseointegration of implants. Mater Today Bio. 2023;23:100848.
[11] DE MEO D, CECCARELLI G, IAIANI G, et al. Clinical Application of Antibacterial Hydrogel and Coating in Orthopaedic and Traumatology Surgery. Gels. 2021;7(3):126.
[12] ONORATO F, MASONI V, GAGLIARDI L, et al. What to Know about Antimicrobial Coatings in Arthroplasty: A Narrative Review. Medicina (Kaunas). 2024;60(4):574.
[13] GALLO J, HOLINKA M, MOUCHA CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849-13880.
[14] ROMANÒ CL, SCARPONI S, GALLAZZI E, et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157.
[15] CHEN Y, ZHOU L, GUAN M, et al. Multifunctionally disordered TiO2 nanoneedles prevent periprosthetic infection and enhance osteointegration by killing bacteria and modulating the osteoimmune microenvironment. Theranostics. 2024;14(15):6016-6035.
[16] GIBON E, AMANATULLAH DF, LOI F, et al. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J Biomed Mater Res B Appl Biomater. 2017;105(7):2162-2173.
[17] MEI S, WANG H, WANG W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;35(14):4255-4265.
[18] FILIPOVIĆ U, DAHMANE RG, GHANNOUCHI S, et al. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci. 2020; 283:102228.
[19] ARCIOLA CR, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409.
[20] GHIMIRE A, SONG J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS Appl Mater Interfaces. 2021;13(18): 20921-20937.
[21] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54.
[22] PIGOSSI SC, MEDEIROS MC, SASKA S, et al. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review. Int J Mol Sci. 2016;17(11):1885.
[23] RAPHAEL-MIZRAHI B, ATTAR-NAMDAR M, CHOURASIA M, et al. Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. Elife. 2022;11: e65834.
[24] GUO X, BAI J, GE G, et al. Bioinspired peptide adhesion on Ti implants alleviates wear particle-induced inflammation and improves interfacial osteogenesis. J Colloid Interface Sci. 2022;605:410-424.
[25] ZAIOU M, GALLO RL. Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl). 2002;80(9):549-561.
[26] BOLOSOV IA, PANTELEEV PV, SYCHEV SV, et al. Dodecapeptide Cathelicidins of Cetartiodactyla: Structure, Mechanism of Antimicrobial Action, and Synergistic Interaction With Other Cathelicidins. Front Microbiol. 2021;12:725526.
[27] BHATTACHARJYA S, ZHANG Z, RAMAMOORTHY A. LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases. Biomolecules. 2024;14(3):320.
[28] GUERRA M, VIEIRA B, CALAZANS A, et al. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol. 2024;15: 1405760.
[29] YOON G, PUENTES R, TRAN J, et al. The role of cathelicidins in neutrophil biology. J Leukoc Biol. 2024;116(4):689-705.
[30] SÁNCHEZ-PEÑA FJ, MLÁ R, TORRES-AGUILAR H, et al. LL-37 Triggers Antimicrobial Activity in Human Platelets. Int J Mol Sci. 2023;24(3): 2816.
[31] SU Y, SHARMA NS, JOHN JV, et al. Engineered Exosomes Containing Cathelicidin/LL-37 Exhibit Multiple Biological Functions. Adv Healthc Mater. 2022;11(20):e2200849.
[32] MAJEWSKA M, ZAMLYNNY V, PIETA IS, et al. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry. 2021;141:107842.
[33] ENGELBERG Y, LANDAU M. The Human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structure. Nat Commun. 2020;11(1):3894.
[34] VAN DER SCHOT G, BONVIN AM. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR. J Biomol NMR. 2015;62(4): 497-502.
[35] BAI J, WANG H, CHEN H, et al. Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation. Biomaterials. 2020;255:120197.
[36] 贾麒钰,黄晓夏,郭建,等.整合素靶向肽促进SD大鼠骨髓间充质干细胞的增殖[J].中国组织工程研究,2022,26(30):
4780-4786.
[37] RAPHEL J, KARLSSON J, GALLI S, et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials. 2016;83:269-282.
[38] MEYERS SR, GRINSTAFF MW. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev. 2012;112(3): 1615-1632.
[39] PAN G, GUO Q, MA Y, et al. Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets. Angew Chem Int Ed Engl. 2013;52(27):6907-6911.
[40] EHRENSBERGER MT, CLARK CM, CANTY MK, et al. Electrochemical methods to enhance osseointegrated prostheses. Biomed Eng Lett. 2020;10(1):17-41.
[41] JALALI F, OVEISI H, MESHKINI A. Enhanced osteogenesis properties of titanium implant materials by highly uniform mesoporous thin films of hydroxyapatite and titania intermediate layer. J Mater Sci Mater Med. 2020;31(12):114.
[42] ZHAO H, HUANG Y, ZHANG W, et al. Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomater Sci Eng. 2018;4(7):
2505-2515.
[43] PAN G, SUN S, ZHANG W, et al. Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. J Am Chem Soc. 2016;138(45):15078-15086.
[44] SUN J, HUANG Y, ZHAO H, et al. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact Mater. 2022;9:1-14.
[45] RODRIGUES LOPES I, ALCANTARA LM, SILVA RJ, et al. Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature. Nat Commun. 2022;13(1):7174.
[46] JEVON M, GUO C, MA B, et al. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun. 1999;67(5):2677-2681.
[47] WRIGHT JA, NAIR SP. Interaction of staphylococci with bone. Int J Med Microbiol. 2010;300(2-3):193-204.
[48] JIN Y, LIU H, CHU L, et al. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe3O4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater. 2024;40:148-167.
[49] GUO HN, TONG YC, WANG HL, et al. Novel Hybrid Peptide Cathelicidin 2 (1-13)-Thymopentin (TP5) and Its Derived Peptides with Effective Antibacterial, Antibiofilm, and Anti-Adhesion Activities. Int J Mol Sci. 2021;22(21):11681.
[50] AGADI N, MAITY A, JHA AK, et al. Distinct mode of membrane interaction and disintegration by diverse class of antimicrobial peptides. Biochim Biophys Acta Biomembr. 2022;1864(12):184047.
[51] LIU H, LIU Z, DU J, et al. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma. Sci Transl Med. 2016;8(353):353ra113.
[52] MA Y, ZHANG Y, LIN Y, et al. Effects of osteogenic growth peptide C-terminal pentapeptide and its analogue on bone remodeling in an osteoporosis rat model. Open Med (Wars). 2023;18(1):20230656.
[53] POLICASTRO GM, LIN F, SMITH CALLAHAN LA, et al. OGP functionalized phenylalanine-based poly(ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules. 2015;16(4):1358-1371.
[54] CHEN YC, BAB I, MANSUR N, et al. Structure-bioactivity of C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)]. J Pept Res. 2000;56(3):147-156.
[55] LEE SJ, KANG SW, DO HJ, et al. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials. 2010;31(21):5652-5659.
[56] CHEN Z, WANG X, SHAO Y, et al. Synthetic osteogenic growth peptide promotes differentiation of human bone marrow mesenchymal stem cells to osteoblasts via RhoA/ROCK pathway. Mol Cell Biochem. 2011;358(1-2):221-227.
[57] PING Z, WANG Z, SHI J, et al. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomater. 2017;62:362-371.
[58] MIGUEL SM, NAMDAR-ATTAR M, NOH T, et al. ERK1/2-activated de novo Mapkapk2 synthesis is essential for osteogenic growth peptide mitogenic signaling in osteoblastic cells. J Biol Chem. 2005; 280(45):37495-37502.
[59] YU YL, WU JJ, LIN CC, et al. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil Med Res. 2023;10(1):21.
[60] LIU H, JIAO Y, ZHOU W, et al. Endothelial progenitor cells improve the therapeutic effect of mesenchymal stem cell sheets on irradiated bone defect repair in a rat model. J Transl Med. 2018; 16(1):137. |