Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (21): 4593-4601.doi: 10.12307/2025.810
Previous Articles Next Articles
Zhang Shuyang1, Du Xinyu1, Zhao Donglin1, Xing Zheng2, Chu Xiaolei2, Li Qi2
Received:
2024-06-07
Accepted:
2024-07-12
Online:
2025-07-28
Published:
2024-12-07
Contact:
Li Qi, Master’s supervisor, Associate chief physician, Tianjin Hospital of Tianjin University, Tianjin 300211, China
About author:
Zhang Shuyang, Master candidate, School of Sports and Health, Tianjin Institute of Physical Education, Tianjin 301617, China
Supported by:
CLC Number:
Zhang Shuyang, Du Xinyu, Zhao Donglin, Xing Zheng, Chu Xiaolei, Li Qi. Application of virtual reality technology in functional recovery of peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4593-4601.
2.1.1 周围神经 内质网是具有储存Ca2+、分泌蛋白质、合成脂质和加工代谢物等重要功能的重要细胞内细胞器[13]。周围神经损伤后,内质网蛋白稳态发生改变,可引发内质网应激。为恢复内质网的正常生理功能,机体启动保护机制,包括增强蛋白质的适当折叠、抑制堆积蛋白质的翻译、加速蛋白质降解等,此过程称为未折叠蛋白质反应[8]。然而这种自适应调节反应具有一定阈值,若内质网应激过度或过长,则会引起细胞的凋亡。因此,在外周神经损伤的前期,内质网应激的表达水平影响施万细胞的生存。 神经生长因子是一组蛋白质,现被证明可以通过抵消内质网应激引起的施万细胞凋亡来促进细胞存活,从而加速髓鞘碎片增殖[14]。严重的去神经支配模型中,神经生长因子表达在损伤后48 h内在远端残端上调,但随着去神经支配持续很长时间,表达下降[15]。在McGregor的研究中,施万细胞对生长因子的分泌和表达在神经损伤后15 d达到峰值,并在35 d后恢复到正常水平[16]。因此,施万细胞分泌生长因子的能力会随着时间的推移下降,从而导致神经生长因子不足,进一步影响神经再生的速率。 2.1.2 靶器官 脊髓前角细胞的再神经支配不仅影响神经的再生,还影响靶器官肌肉功能的恢复。周围神经损伤后,对受损运动神经元的兴奋性和抑制性突触输入都会撤回[9]。即使再生的轴突能够达到目标,也只有在终末器官得到维持的情况下才有可能实现功能恢复。研究表明,肌纤维在去神经支配3周后就会萎缩,并且会在肌内膜形成胶原沉积物,而肌肉的结构和终板的完整性则可以维持长达1年[17]。伤后2年,会发生不可逆的肌肉纤维化与肌肉退化,从而导致功能性肌肉组织永久性丧失。因此,在周围神经损伤后一年内积极进行治疗,患者运动功能恢复概率较大。 此外,在正常运动中,拉伸敏感的传入神经元在表达囊泡谷氨酸转运蛋白1的末梢与运动神经元形成突触。周围神经损伤后,即使通过手术实现了外周再生,持续的运动缺陷仍然存在。从功能上讲,正常未受伤动物的单个敏感的感觉本体感受器(即Ia)传入神经为大约93%的运动池提供输入,但在损伤和完全再生后,它们仅支配17%的运动神经元池,并且通过拉伸肌肉诱发的剩余突触电位显著减少[18]。因此,受伤的Ia传入轴突可以在外周再生,重新支配肌肉和肌肉纺锤体并使功能变得正常。但是,它们的中央分支不会重建腹角中丢失的突触,从而导致囊泡谷氨酸转运蛋白1突触在运动神经元上永久丧失,这也被认为是周围神经损伤后神经再支配肌肉中拉伸反射永久丧失的基础[10]。 2.1.3 脑 可塑性是神经元的一个特征,在神经系统中较为常见,它代表了神经元在整个生命周期中改变其功能和结构的适应性,以响应来自环境、学习过程、损伤和疾病的各种信号[19]。而文章主要聚焦于皮质可塑性与周围神经损伤的潜在关系。在初级躯体感觉和运动皮质中,每个身体部位都有相应的表征区域,因此,周围神经损伤后,病理变化不仅发生在直接损伤部位,还会导致躯体感觉皮质深刻地改变和重组,这些变化可能会影响周围神经损伤后功能恢复的结果,并可能导致成功手术修复后患者预后的差异。周围神经损伤后皮质重组的机制学说主要包括以下2种:①当功能定位部分损伤时,其功能可向对侧半球相应部位转移和由损伤部位的周边神经来代偿。在SILVA等[11]的研究中,当猴子的正中神经被切断时,其相关皮质区域活动明显丧失;随后,邻近的尺神经代表区域开始发挥代偿作用,并逐步扩展;随着时间的推移,这种新生的皮质代表区域的定位逐渐精确化,与周边大脑皮质代表区的边界也愈发清晰。在恢复过程中如果受到某种刺激或训练,其大脑皮质代表区域可能会发生进一步的变化,以适应新的需求或环境。②中枢神经系统中原本就存在但平时“休眠状态”的神经连接称为潜伏通路。一旦主要感觉神经通路损伤,冲动传达网络出现抑制状态,阻断感觉传入,其大脑感觉区的抑制性神经递质y-氨基丁酸出现一过性减少,使得潜伏通路暴露,介导可塑性变化[12]。 此外,即使在外周神经再生成功后,由于受损神经的轴突发芽、再生并与适当或异常的目标建立新的连接,中枢神经系统依旧会发生持久的改变[20]。因此,不完整的周围神经回路并非限制神经功能恢复的唯一因素,大脑皮质重组在功能恢复中也起着至关重要的作用。如果神经损伤后的中枢可塑性适应不良导致慢性功能障碍,那么即使受损神经本身没有变化的情况下,仅重建正常中枢网络信号应该可以改善功能,见图3。"
2.2 虚拟现实的应用 最早用于神经康复目的的技术之一是机器人技术,包括从末端执行器及外骨骼等,并已在实际应用中展现出积极的效果[21]。然而,机器人设备高昂的价格和复杂的维护需求限制了其在居家环境中的普及,为了克服这一难题,虚拟现实技术作为一种替代方案在近15年里得到了快速发展。其中,最早将虚拟现实技术应用于神经康复的案例是利用任天堂Wii游戏机进行上肢康复训练[22]。该游戏机通过在远程控制设备中使用各种运动跟踪传感器,以在非沉浸式虚拟现实环境中通过虚拟形象执行各种动作,尽管缺乏沉浸感,但Wii系统已被证明与经典物理疗法一样有效[23]。但该技术仅关注上半身康复,Microsoft Kinect的出现使虚拟现实全身跟踪成为可能[24],并且可以准确地将人体运动映射到虚拟形象的四肢姿势上[25]。基于Kinect的虚拟现实神经康复可以在更低成本的情况下帮助大脑重组,这也是运动功能恢复的基础[26]。 沉浸感在基于虚拟现实的神经康复中起着重要作用,研究表明,在执行经典的康复运动(例如屈曲、伸展及头部旋转)时,非沉浸式系统会导致康复疗效降低[27]。与第三人称视角相比,以第一人称视角进行虚拟现实训练时,由于具身性和存在感的提升,神经系统疾病患者功能恢复效果得到改善[28]。同时,虚拟现实耳机的使用也可以增加沉浸感,只要正确使用虚拟现实设备,并且不超过合理的时间范围,对神经系统疾病患者不会产生如头晕、跌倒等负面影响[29]。此外,将头戴式显示器(即Oculus Rift)与运动检测系统(即Kinect)相结合,也可以更好地改善活动能力和生活质量[30]。近年来,基于红外线进行运动追踪的HTC Vive系统被认为是一个可行的替代方案。研究表明,它与高成本的运动捕捉系统相比,误差仅在几毫米[31]。由于HTC Vive被证明对神经康复有用,它与电动踏板结合被用于下肢运动功能障碍的患者[32]。同时随着技术的发展,生物传感器(脑电图和肌电图)的加入也为虚拟现实训练提供了更加准确客观的生理反馈[33]。虚拟现实技术在下肢周围神经损伤后功能恢复中的应用广泛[34-38],见表2。具体时间脉络,见图4。"
2.3 虚拟现实和传统疗法相联合 2.3.1 虚拟现实和镜像疗法相联合 镜像疗法被认为是神经康复的有效疗法,它是一种视觉反馈技术,其核心在于激活人体的镜像神经元系统,依据镜像反射原理产生视错觉,调动患肢模仿健侧肢体运动,通过观察健康的肢体运动或使用镜面反射的肢体运动,使得大脑产生患肢正在执行该动作的错觉,刺激患肢初级运动皮质,从而促进运动功能恢复[39]。此外,镜像疗法通过让患者观察到镜中的运动,刺激大脑增强其神经可塑性。在KUMRU等[40]的研究中,当直接或通过镜子提供活动手的视觉反馈时,同侧运动皮质兴奋性增加,但当手的视力受阻时则不会,这表明视觉反馈在运动皮质可塑性中至关重要。在动物研究中,皮质脊髓兴奋性增加有利于神经可塑性的诱导[41]。 因此,通过反复观察和模仿运动,可以增强神经回路的连接性和协调性,促进受损部分的再生和功能恢复。 然而,传统镜像疗法要求患者至少有一个有效的身体部分可以进行运动,才能通过镜像反射产生视错觉。因此,两侧周围神经损伤患者常不能从传统的镜像疗法中受益,但虚拟现实技术很好地解决了这个问题,患者可以通过虚拟现实场景看到化身的双臂或下肢的运动,大脑基于虚拟化身建立了一个新的心理模型,从而增强了具身化的体验,更好地唤起了镜像神经元系统核心皮质的活动[42]。神经影像学证据显示,具有镜像特性的神经元广泛存在于运动相关大脑区域,包括辅助运动区、前运动皮质和初级运动皮质,动作执行和动作观察任务之间存在神经元激活重叠[43]。因此,虚拟现实通过促进镜像神经元系统核心皮质与感觉运动皮质的功能整合,增强了自上而下的运动促进。在虚拟环境中,由于患者不需要坐在固定的位置上,减少了对体位的限制,因此虚拟现实可以应用于术后早期患者,让躺着进行锻炼成为可能。研究表明,大多数人在一定程度上更喜欢躺着的姿势,并且普遍认为躺着的时候更容易定位他们的脚[44],这可能是由于躺着的时候参与者有更多的精力专注于完成任务,而不是移动腿部。此外,虚拟现实技术还可以给日常训练带来更有趣味、更具激励性的环境,例如游戏环境,从而增加患者自主训练积极性。 2.3.2 虚拟现实与肌腱振动相联合 肌腱振动诱导的运动错觉是改善皮质兴奋性、神经可塑性和运动功能的有力的工具[45]。肌腱振动一般是以80-100 Hz的频率作用于目标肌腱[46],它能够诱发以振动位置为中心的运动错觉[47]。在有关肌腱振动的文献中,得知这种振动与感觉运动区域皮质兴奋性的被动运动相对应[48]。施加在肌腱上的振动感会激活局部机械感受器,从而诱导该肌腱伸长[49]。这种现象会引起与振动肌腱拮抗的动觉错觉,并导致感觉运动区皮质活动增加,本体运动回路激活增强。并且相较于视觉运动回路,本体感觉运动回路在神经元激活方面速度更快且自动性较高[50],有助于神经损伤后运动功能的恢复。而将虚拟现实与肌腱振动相联合,则可以通过视觉沉浸式环境来增强了参与者对肌腱振动引起的幻觉运动的感知。LE FRANC等[51]的研究证明,当屏幕上看到的虚拟肢体的运动与感觉到的错觉一致时,参与者对肌腱振动引起的虚幻运动的感知会更强。 2.3.3 虚拟现实和跑步机训练相联合 神经再生作为周围神经系统康复的关键步骤之一,跑步机训练对周围神经系统再生的益处已得到充分证实。研究表明,跑步机训练会引起神经元碱性成纤维细胞生长因子表达的增加,并通过与轴突生长锥上的TrkB受体联合激活下游信号传导通路以及通过合成RNA联合蛋白ZBP-1来刺激再生轴突的延伸[52]。并且,运动能显著降低轴突生长抑制剂髓鞘相关糖蛋白的水平,减少对轴突的生长抑制[53]。此外,运动还可以通过改善轴突再生环境,从而促进神经再生。远端末端神经长时间去神经支配是靶器官神经再生受损的主要原因,因此远端神经通路在维持周围神经再生中起着关键作用[54]。研究表明,运动不仅可以通过增加细胞外调节激酶(ERK)1/2 的活性来刺激经损伤后的施万细胞增殖,还对完整神经的脂质过氧化有保护作用,从而减少施万细胞的凋亡[55]。 下肢周围神经损伤患者大多会由于肌肉无力、平衡控制能力下降,导致跌倒风险更高。基于此,跑步机训练不仅对延缓肌肉萎缩、维持肌肉质量有明显效果,还可以改善肌间和肌内协调以及神经控制,有助于改善肌肉稳定性和步态[56]。此外,通过运动囊泡谷氨酸转运蛋白1脊髓神经元突触覆盖率得以维持[9],那么周围神经损伤后拉伸反射可能持续存在,这也对恢复正常运动能力具有重要意义。 将虚拟现实引入跑步机训练是基于用户无法对真实环境中类似障碍物或起伏路面进行很好地处理和应对时,设计出来帮助周围神经损伤患者进行步态适应性训练的设备。虚拟现实跑台可以满足不同功能水平、不同训练目标的需要来精确化训练任务的多元化需求。并且,虚拟现实系统可以准确记录用户每一步的时空参数,实时将动态数据展示给操作者。这种反馈机制有利于提高患者平衡功能和运动功能,从而提高其步行速度及步行能力。 此外,行走是一种天生的多感官活动,但以往跑步机训练常是在单一训练环境中进行。大多数人在由跑步机训练向现实环境步行训练过渡过程中都会产生明显的不适应感。而虚拟现实则可以为用户在虚拟行走过程中提供适当的多感官刺激,如视觉、听觉和触觉等。视觉是一种直接、丰富和精确的空间信息来源,神经系统疾病患者可以使用视觉反馈来调整身体的重心,并达到控制身体状态的目的。有研究表明,虚拟现实中的视觉信息可以为感觉运动回路的重组提供有力的信号[57]。听觉则提供了更多有关周围环境的信息,虚拟现实系统能够合成在不同表面上行走的声音,包括木头、雪和草地,显著增加参与者在虚拟环境中的存在感和用户执行的运动量。触觉反馈提供压力感受器来提供,TERZIMAN等[58]指出,即使是低保真度的触觉反馈,也会增加在虚拟环境中的存在感。因此,将虚拟现实环境与自定进度的跑步机步行相联合,可以在更逼真的现实生活中进行训练,包括训练过马路等现实生活中的任务,更好地帮助下肢周围神经损伤患者尽快地融入家庭和社会生活。 2.3.4 不同联合疗法的比较 综上所述,在虚拟现实系统中,运动功能障碍的患者允许进行重复相同的练习,以最大程度地恢复受损的运动功能,而患者的执行情况和康复进度也可以被监控和记录。与传统方法相比,虚拟现实技术在康复领域具有独特的优势。首先,它具有趣味性,增加患者康复积极性,患者可以选择日常生活中喜欢的运动进行训练。其次,患者可以在床上、轮椅上、站立或行走时接受训练,因此不需要稳定的姿势控制,降低了训练难度,更适用于周围神经损伤后早期患者。最后,虚拟现实技术通过多感官刺激促进皮质可塑性,相邻的皮质区域入侵沉寂区,这些区域对其他输入做出反应或产生新的肌肉激活,从而促进功能恢复,这也是虚拟现实技术促进周围神经损伤后功能恢复的主要机制,见图5。"
虚拟现实技术作为辅助手段贯穿整个康复周期。周围神经损伤患者康复初期可以选择虚拟现实镜像疗法,虚拟现实技术的介入减少了对患者体位的限制,从而提早了康复介入的时期。虚拟现实与肌腱振动相联合同样适用于康复早期,但由于视觉和本体感觉的双重刺激促使患者产生更强的运动错觉。虚拟现实跑台则适用于下肢周围神经损伤康复后期,着重关注患者平衡和步行功能,同时通过模拟现实环境帮助患者提高回归社会的能力[58-60]。上述3种疗法比较具体见表3。 总之,传统疗法主要作用于外周神经系统,这常忽视了中枢神经系统可塑性对神经康复的重要性,因此治疗效果有限。而虚拟现实技术的出现,恰恰弥补了这一不足,实现了中枢-外周神经系统的协同作用,带来了双重的治疗效果,这无疑为周围神经损伤的治疗带来了革命性的改变[61]。"
[1] XING XX, ZHENG MX, HUA XY, et al. Brain plasticity after peripheral nerve injury treatment with massage therapy based on resting-state functional magnetic resonance imaging. Neural Regen Res. 2021; 16(2):388-393. [2] 王程灵,徐菁菁,邓韵,等.周围神经损伤居家康复指南[J].中国康复医学杂志,2022;37(4):433-442. [3] LOPES B, SOUSA P, ALVITES R, et al. Peripheral nerve injury treatments and advances: one health perspective. Int J Mol Sci. 2022;23(2):918. [4] PARKER BJ, RHODES DI, O’BRIEN CM, et al. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: a commercial perspective. Acta Biomater. 2021;135:64-86. [5] CHU XL, SONG XZ, LI Q, et al. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022;17(10):2185-2193. [6] DOBKIN BH. A rehabilitation-internet-of-things in the home to augment motor skills and exercise training. Neurorehab Neural Res. 2017;31(3): 217-227. [7] KUO LC, YANG KC, LIN YC, et al. Internet of things (IoT) enables robot-assisted therapy as a home program for training upper limb functions in chronic stroke: a randomized control crossover study. Arch Phys Med Rehab. 2023;104(3):363-371. [8] PERNER C, KRÜGER E. Endoplasmic reticulum stress and its role in homeostasis and immunity of central and peripheral neurons. Front lmmunol. 2022;13:859703. [9] MINEGISHI Y, NISHIMOTO J, UTO M, et al. Effects of exercise on muscle reinnervation and plasticity of spinal circuits in rat sciatic nerve crush injury models with different numbers of crushes. Muscle Nerve. 2022; 65(5):612-620. [10] ROTTERMAN TM, AKHTER ET, LANE AR, et al. Spinal motor circuit synaptic plasticity after peripheral nerve injury depends on microglia activation and a CCR2 mechanism. J Neurosci. 2019;39(18):3412-3433. [11] SILVA AC, RASEY SK, WU X, et al. Initial cortical reactions to injury of the median and radial nerves to the hands of adult primates.J Comp Neurol. 1996;366(4):700-716. [12] WANG C, HAO H, HE K, et al. Neuropathic injury-induced plasticity of gabaergic system in peripheral sensory ganglia. Front Pharmacol. 2021;12:702218. [13] ELGENDY M, TAMADA H, TAIRA T, et al. Dynamic changes in endoplasmic reticulum morphology and its contact with the plasma membrane in motor neurons in response to nerve injury. Cell Tissue Res. 2024;396(1):71-84. [14] SHIMOKE K, KISHI S, UTSUMI T, et al. NGF-induced phosphatidylinositol 3-kinase signaling pathway prevents thapsigargin-triggered ER stress-mediated apoptosis in PC12 cells. Neurosci Lett. 2005;389(3):124-128. [15] MCGREGOR CE, ENGLISH AW. The Role of BDNF in peripheral nerve regeneration: activity-dependent treatments and Val66Met. Front Cell Neurosci. 2018;12:522. [16] OLIVEIRA AL, THAMS S, LIDMAN O, et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci U S A. 2004;101(51):17843-17848. [17] BULLINGER KL, NARDELLI P, PINTER MJ, et al. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons. J Clin Neurophysiol. 2011;106(5):2471-2485. [18] ROTTERMAN TM, GARCíA VV, HOUSLEY SN, et al. Structural preservation does not ensure function at sensory ia-motoneuron synapses following peripheral nerve injury and repair. J Neurosci. 2023;43(24):4390-4404. [19] LI C, LIU SY, PI W, et al. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021;16(8):1518-1523. [20] MODRAK M, TALUKDER MAH, GURGENASHVILI K, et al. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780-795. [21] FASOLI SE, KREBS HI, STEIN J, et al. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehab. 2003;84(4):477-482. [22] SAPOSNIK G, TEASELL R, MAMDANI M, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010; 41(7):1477-1484. [23] DA SILVA RIBEIRO NM, FERRAZ DD, PEDREIRA É, et al. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top Stroke Rehabil. 2015;22(4):299-305. [24] LLORÉNS R, ALCAÑIZ M, COLOMER C, et al. Balance recovery through virtual stepping exercises using Kinect skeleton tracking: a follow-up study with chronic stroke patients. Stud Health Technol Inform. 2012; 181:108-112. [25] SILVA DE SOUSA JC, TORRIANI-PASIN C, TOSI A B, et al. Aerobic stimulus induced by virtual reality games in stroke survivors. Arch Phys Med Rehab. 2018;99(5):927-933. [26] KANG YJ, PARK HK, KIM HJ, et al. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. J Neuroeng Rehabil. 2012;9:71. [27] KIPER P, BABA A, ALHELOU M, et al. Assessment of the cervical spine mobility by immersive and non-immersive virtual reality. J Electromyogr Kines. 2020;51:102397. [28] BORREGO A, LATORRE J, ALCAÑIZ M, et al. Embodiment and presence in virtual reality after stroke. a comparative study with healthy subjects. Front Neurol. 2019;10:1061. [29] NOROUZI-GHEIDARI N, HERNANDEZ A, ARCHAMBAULT P S, et al. Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. Int J Env Res Pub He. 2019;17(1):113. [30] SÁNCHEZ-HERRERA-BAEZA P, CANO-DE-LA-CUERDA R, OÑA-SIMBAÑA ED, et al. The impact of a novel immersive virtual reality technology associated with serious games in Parkinson’s disease patients on upper limb rehabilitation: a mixed methods intervention study. Sensors. 2020;20(8):2168. [31] JOST TA, DREWELOW G, KOZIOL S, et al. A quantitative method for evaluation of 6 degree of freedom virtual reality systems. J Biomech, 2019;97:109379. [32] MERKER S, PASTEL S, BÜRGER D, et al. Measurement accuracy of the HTC VIVE tracker 3.0 compared to vicon system for generating valid positional feedback in virtual reality. Sensors. 2023;23(17):7371. [33] VOURVOPOULOS A, PARDO OM, LEFEBVRE S, et al. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: a pilot study in chronic stroke patients. Front Hum Neurosci. 2019;13:210. [34] LIN CY, TSAI CM, SHIH PC, et al. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation. Technol Health Care. 2015;24 Suppl 1:S97-S103. [35] CERADINI M, LOSANNO E, MICERA S, et al. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review. J Neuroeng Rehabil. 2024;21(1):75. [36] ALONSO-ENRÍQUEZ L, GÓMEZ-CUARESMA L, BILLOT M, et al. Effectiveness of virtual reality and feedback to improve gait and balance in patients with diabetic peripheral neuropathies: systematic review and meta-analysis. Healthcare. 2023;11(23):3037. [37] JANEH O, STEINICKE F. A review of the potential of virtual walking techniques for gait rehabilitation. Front Hum Neurosci. 2021;15: 717291. [38] HONG S, LEE G. Effects of an immersive virtual reality environment on muscle strength, proprioception, balance, and gait of a middle-aged woman who had total knee replacement: a case report. Am J Case Rep, 2019;20:1636-1642. [39] MICLAUS RS, ROMAN N, HENTER R, et al. Lower extremity rehabilitation in patients with post-stroke sequelae through virtual reality associated with mirror therapy. Int J Environ Res Public Health. 2021;18(5):2654. [40] KUMRU H, ALBU S, PELAYO R, et al. Motor cortex plasticity during unilateral finger movement with mirror visual feedback. Neural Plast, 2016;2016:6087896. [41] JACOBS KM, DONOGHUE JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251(4996): 944-947. [42] CURIEL RC, NAKAMURA T, KUZUOKA H, et al. Virtual reality self co-embodiment: an alternative to mirror therapy for post-stroke upper limb rehabilitation. leee T Vis Comput Gr. 2024;30(5):2390-2399. [43] RIZZOLATTI G, SINIGAGLIA C. The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci. 2016;17(12):757-765. [44] TAO G, GARRETT B, TAVERNER T, et al. Immersive virtual reality health games: a narrative review of game design.J Neuroeng Rehabil. 2021; 18(1):31. [45] FILIPPI GM, RODIO A, FATTORINI L, et al. Plastic changes induced by muscle focal vibration: a possible mechanism for long-term motor improvements. Front Cell Neurosci. 2023;17:1112232. [46] BERTRAND-CHARETTE M, PERRON MP, DA SILVA R A, et al. Vibration-induced postural reactions: a scoping review on parameters and populations studied. Front Hum Neurosci. 2023;17:1307639. [47] SCHNEIDER C, MARQUIS R, JÖHR J, et al. Disentangling the percepts of illusory movement and sensory stimulation during tendon vibration in the EEG. NeuroImage. 2021;241:118431. [48] NAITO E, EHRSSON H H, GEYER S, et al. Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci. 1999;19(14):6134-6144. [49] FUSCO G, TIERI G, AGLIOTI SM. Visual feedback from a virtual body modulates motor illusion induced by tendon vibration. Psychol Res. 2021;85(3):926-938. [50] NASRALLAH FA, MOHAMED AZ, CAMPBELL ME, et al. Functional connectivity of brain associated with passive range of motion exercise: proprioceptive input promoting motor activation? NeuroImage. 2019;202:116023. [51] LE FRANC S, FLEURY M, COGNE M, et al. Influence of virtual reality visual feedback on the illusion of movement induced by tendon vibration of wrist in healthy participants. PLoS One. 2020;15(11): e0242416. [52] SEO TB, CHO YH, SAKONG H, et al. Effect of treadmill exercise and bone marrow stromal cell engraftment on activation of BDNF-ERK-CREB signaling pathway in the crushed sciatic nerve. J Exerc Rehabil. 2021;17(6):403-409. [53] LOTFI A, ABBASI M, KARAMI N, et al. Effects of treadmill training on myelin proteomic markers and cerebellum morphology in a rat model of cuprizone-induced toxic demyelination. J Neuroimmunol. 2024;387:578286. [54] SLEIJSER-KOEHORST MLS, KOOP MA, COPPIETERS MW, et al. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: a systematic review with meta-analyses. J Neuroinflamm. 2023;20(1):104. [55] ARMADA-DA-SILVA P A, PEREIRA C, AMADO S, et al. Role of physical exercise for improving posttraumatic nerve regeneration. Int Rev Neurobiol. 2013;109:125-149. [56] KAMADA Y, ARAI Y, TOYAMA S, et al. Hypoxia with or without treadmill exercises affects slow-twitch muscle atrophy and joint destruction in a rat model of rheumatoid arthritis. Int J Mol Sci. 2023;24(11):9761. [57] ALWASHMI K, MEYER G, ROWE F, et al. Enhancing learning outcomes through multisensory integration: a fMRI study of audio-visual training in virtual reality. NeuroImage. 2024;285:120483. [58] TERZIMAN L, MARCHAL M, MULTON F, et al. Personified and multistate camera motions for first-person navigation in desktop virtual reality. IEEE Trans Vis Comput Graph. 2013;19(4):652-661. [59] HIRAO Y, AMEMIYA T, NARUMI T, et al. Leveraging Tendon Vibration to Enhance Pseudo-Haptic Perceptions in VR. IEEE Trans Vis Comput Graph. 2024;30(8):5861-5874. [60] KIM YS, WON J, JANG SW, et al. Effects of cybersickness caused by head-mounted display-based virtual reality on physiological responses: cross-sectional study. Jmir Serious Games. 2022;10(4):e37938. [61] WEN D, FAN Y, HSU SH, et al. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: a narrative review. Ann Phys Rehabil Med. 2021;64(1):101404. [62] EHIOGHAE M, MONTOYA A, KESHAV R, et al. Effectiveness of virtual reality-based rehabilitation interventions in improving postoperative outcomes for orthopedic surgery patients. Curr Pain Headache Rep. 2024;28(1):37-45. [63] PFENNINGER C, GROSPRÊTRE S, REMONTET A, et al. Comparison of the on-line effects of different motor simulation conditions on corticospinal excitability in healthy participants. Sci Rep-UK. 2021;11(1):13176. [64] SLOOT LH, VAN DER KROGT MM, HARLAAR J. Effects of adding a virtual reality environment to different modes of treadmill walking. Gait posture. 2014;39(3):939-945. [65] OSUMI M, ICHINOSE A, SUMITANI M, et al. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system. Eur J Pain. 2017; 21(1):140-147. [66] MICLAUS RS, ROMAN N, HENTER R, et al. Lower extremity rehabilitation in patients with post-stroke sequelae through virtual reality associated with mirror therapy. Int J Environ Res Public Health. 2021;18(5):2654. [67] FAN H, LUO Z. Functional integration of mirror neuron system and sensorimotor cortex under virtual self-actions visual perception. Behav Brain Res. 2022;423:113784. [68] XIAO X, LIN Q, LO W L, et al. Cerebral reorganization in subacute stroke survivors after virtual reality-based training: a preliminary study. Behav Neurol. 2017;2017:6261479. |
[1] | Zhou Panpan, Cui Yinglin, Zhang Wentao, Wang Shurui, Chen Jiahui, Yang Tong . Role of cellular autophagy in cerebral ischemic injury and the regulatory mechanism of traditional Chinese medicine [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1650-1658. |
[2] | Li Jialin, Zhang Yaodong, Lou Yanru, Yu Yang, Yang Rui. Molecular mechanisms underlying role of mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1512-1522. |
[3] | Zhao Xiaoxuan, Liu Shuaiyi, Li Qi, Xing Zheng, Li Qingwen, Chu Xiaolei. Different exercise modalities promote functional recovery after peripheral nerve injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1248-1256. |
[4] | Zhang Wenhua, Li Xun, Zhang Weichao, Li Xinying, Ma Guoao, Wang Xiaoqiang . Promoting myogenesis based on the SphK1/S1P/S1PR2 signaling pathway: a new perspective on improving skeletal muscle health through exercise [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1265-1275. |
[5] | Qian Kun, Li Ziqing, Sun Shui . Endoplasmic reticulum stress in the occurrence and development of common degenerative bone diseases [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1285-1295. |
[6] | Liu Zan, An Ran, Li Baocheng. Effect of pravastatin on functional recovery from sciatic nerve crush injury in rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 942-950. |
[7] | Wang Yuru, Li Siyuan, Xu Ye, Zhang Yumeng, Liu Yang, Hao Huiqin. Effects of wogonin on joint inflammation in collagen-induced arthritis rats via the endoplasmic reticulum stress pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1026-1035. |
[8] | Wu Guangtao, Qin Gang, He Kaiyi, Fan Yidong, Li Weicai, Zhu Baogang, Cao Ying . Causal relationship between immune cells and knee osteoarthritis: a two-sample bi-directional Mendelian randomization analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1081-1090. |
[9] | Guo Zhao, Zhuang Haoyan, Shi Xuewen. Role of exosomes derived from mesenchymal stem cells in treatment of colorectal cancer [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7872-7879. |
[10] | Shui Jing, He Yu, Jiang Nan, Xu Kun, Song Lijuan, Ding Zhibin, Ma Cungen, Li Xinyi. Astrocytes regulate remyelination in central nervous system [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7889-7897. |
[11] | Guo Haizhen, Cong Zidong, Zhao Yuke, Li Xiaofeng, Yu Lu, Qian Shule, Wang Runying, Du Wuxun. Development of patch clamp technology in the past 10 years: visual analysis based on CiteSpace and VOSviewer [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6717-6726. |
[12] | Yuan Xiao, Liang Songlin, Xie Yanan, Guan Dongmei, Fan Longyu, Yin Xiaoxuan. Mesenchymal stem cells from different sources in treatment of inflammatory bowel disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6811-6820. |
[13] | Zhu Menghan, Yang Xuetao, Sun Yimin, Wang Chenglin. Anti-inflammatory peptides for oral inflammatory diseases: regulation of inflammatory response to reduce tissue destruction and structural loss [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6529-6537. |
[14] | Wang Xuesong, Wang Yue, Xu Yan, Zeng Wenhui, Lu Wenming, Tang Xingkun, Chen Wenjie, Ye Junsong. Brain-computer interface combined with different therapies for limb dysfunction in stroke patients: effectiveness and mechanism analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6538-6546. |
[15] | Zhao Xiaoxuan, Liu Shuaiyi, Xing Zheng, Li Qingwen, Chu Xiaolei, Li Qi. Research hotspots and trends in application of tissue engineering in peripheral nerve injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6591-6600. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||