Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (29): 6360-6368.doi: 10.12307/2025.764
Previous Articles Next Articles
Wu Wangxiang1, Ran Dongcheng1, Xu Jiamu1, Xu Jiafu1, Chen Jingjing1, Wang Chunqing2
Received:
2024-09-25
Accepted:
2024-11-12
Online:
2025-10-18
Published:
2025-03-10
Contact:
Wang Chunqing, MD, Professor, Department of Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
About author:
Wu Wangxiang, Master candidate, School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:
CLC Number:
Wu Wangxiang, Ran Dongcheng, Xu Jiamu, Xu Jiafu, Chen Jingjing, Wang Chunqing. Long noncoding RNAs related to osteoporosis: current research status and developmental trends[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(29): 6360-6368.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 发文量年度分析 有关骨质疏松症相关长链非编码RNA研究领域的发文量年度变化分布见图1。由图可知,2015-2024年骨质疏松症相关长链非编码RNA研究文献发表量为265篇,文献最早出现在2015年, TONG等[18]通过研究发现长链非编码RNA参与成骨细胞分化,进而参与骨质疏松症的病理过程,并可能作为绝经后骨质疏松症的生物标志物,由此该领域文献逐渐出现。2015-2017年该领域文献量呈现缓慢增长态势,发文总量较少,但从2018 年开始出现迅速增长,于2021年达到最高峰(51篇),2022 年起发文量又逐渐回落,2024年仅有29篇(2024年1-9月),但根据总体趋势来看,骨质疏松症相关长链非编码RNA领域的研究仍受到社会的持续关注。 2.2 研究国家分布和机构分布分析 以国家为节点,绘制骨质疏松症相关长链非编码RNA研究领域的国家可视化图谱(图2),每个节点代表发表文献国家,节点越大代表发文量越多;节点间的连线代表国家之间的合作关系,连线越多,代表该国家与其他国家之间的合作越紧密;节点颜色代表发表文献的年份。图谱中节点数为18,连线数为15,网络密度为0.098,表明全球共有18个国家开展有关骨质疏松症相关长链非编码RNA研究,其中只有15次国家之间的合作;发文量第一的国家是中国(244篇,85%),其次是美国(13篇,5%)。此外, 中心性较高的前4个国家分别是中国(0.59)、美国(0.41)、意大利(0.26)与西班牙(0.12),结果表明参与该研究领域的国家较少,且国家之间的交流合作较少。以机构为节点,绘制有关骨质疏松症相关长链非编码RNA研究的机构可视化图谱(图 3),各机构发文量及中心性见表1。图3中节点代表发文机构,节点越大代表该机构发文量越多;节点间的连线代表该机构与其他机构之间的合作关系,连线越多代表该机构与其他机构联系越紧密;节点颜色代表年份。图3节点数为146,连线数为156,网络密度为0.014 7,表明全球共有146个机构开展相关研究,机构之间的合作共有156次。通过机构发文量及中心性可知发文量最多的机构是中南大学(11篇),居于首位,其次是南方医科大学(10篇)和北京大学(9篇);中心性较高的前5位机构分别是北京航空航天大学(0.09)、北京大学(0.08)、中国人民解放军总医院(0.07)、中国科学院(0.06)和吉林大学(0.05)。综合机构可视化图谱及机构发文量及中心性可知,综合性大学与医科大学是该领域最主要的研究机构,中国的相关机构更是研究该领域主力军。综合发文量以及中心性可知,中国是该研究领域最为突出的国家,但参与该研究领域的相关国家较少,国家之间的联系与合作不够紧密。通过分析发文机构相关图表,可知北京大学是该领域的主要研究机构,其次中国相关机构的发文量大,但机构间的合作较少,互相之间缺少交流。 2.3 发文作者分析 通过Cite Space对文献进行发文作者共现分析(图4),图中节点代表作者,节点越大代表该作者发文量越多;节点间的连线代表"
作者之间的合作关系,连线越多代表该作者与其他作者联系越紧密;节点颜色代表年份。图4节点数333个,连线数741条,表明有 333 位作者发表文章,作者间共有741次合作。通过发文作者共现分析可知该领域发文量最高的作者为中国的Li Dijie、Qian Airong、Tian Ye以及Yin Chong (均为4篇 ),第二军医大学的Zhang Zheng为近年该来领域较为活跃的研究人员。 2.4 被引参考文献共现分析 通过Cite Space对文献进行被引参考文献共现分析,并列出引用次数排名前 10 位的参考文献(表2)。 被引次数最多(35次)的是Wang Q于2017年发布在《Biomedicine & Pharmacotherapy》杂志的文章,其分别从小鼠病理模型和绝经后骨质疏松症患者中分离培养骨髓间充质干细胞,使用qRT-PCR 检测骨髓间充质干细胞中MEG3和miR-133a-3p的表达,然后构建重组表达载体并转染到骨髓间充质干细胞中,以调节MEG3和miR-133a-3p的内源表达,以矿化结节形成、碱性磷酸酶活性和Runt相关转录因子2、骨钙素、骨桥蛋白表达作为成骨细胞分化的特异性标志物,结果表明MEG3可以调节miR-133a-3p的表达,抑制骨髓间充质干细胞成骨分化[19]。 中心性最高(0.24)的被引参考文献是Huang YP于2015年发表在《Stem Cells》杂志的文章,结果显示H19/miR-675 抑制转化生长因子β1的 mRNA和蛋白表达。转化生长因子β1下调后抑制了Smad3的磷酸化,同时H19/miR-675下调组蛋白脱乙酰酶4/5的mRNA和蛋白水平,从而增加成骨细胞标志物基因的表达,表明H19/miR-675/TGF-β1/Smad3/HDAC途径可以调节骨髓间充质干细胞的成骨分化,并可能作为增强体内骨形成的潜在靶点[20]。 Gao Y发表在《Journal of Cellular Biochemistry》杂志的文章结果发现MALAT1在骨质疏松症患者骨髓间充质干细胞中的表达显著下降,而miR-143的表达则相反,进而验证了MALAT1 通过靶向 miR-143 调节成骨细胞特异性转录因子Osterix表达,是骨髓间充质干细胞成骨分化的正调"
节因子[21]。 Yang Y于2020年发表在《Biological Research》杂志的文章总结了近年来关于 miRNA、长链非编码RNA、环状RNA介导的与成骨细胞和破骨细胞相关的骨质疏松症发病机制的研究结果,更深入地分析这3类RNA在骨质疏松症中的作用,为可能开发的新型诊断和治疗方法提供独特的见解[22]。 Silva AM于2019年发表在《Bone Research》杂志的文章回顾了目前关于长链非编码RNA参与骨质疏松症及其主要并发症脆性骨折相关的细胞和分子机制,对涉及长链非编码RNA与骨质疏松症有关的研究进行了综合修订[23]。 2.5 关键词共现、聚类及突现分析 关键词能够突出显示文章的主题与核心内容,而某领域文献关键词出现的频次可以反映该领域的研究特点[24]。通过Cite Space 对文献关键词进行可视化分析并绘制关键词共现图谱(图5,图中每个节点均代表1个关键词,节点越大代表该关键词出现频次越多;节点间的连线代表关键词之间的共现关系;节点颜色代表年份),以及对排名前10位高频关键词及高中心性关键词进行统计(表3)。图5中节点数为241个,连线数为796条,密度为0.027 5,表明该领域关键词之间联系紧密。表3列出前10位高频关键词如下:bone formation,bone,expression,mesenchymal stem cells,differentiation,long noncoding rna,gene expression,proliferation,cells,stem cells;列出前10位高中心性关键词排名如下:osteogenic differentiation,expression,osteoporosis,mesenchymal stem cells,differentiation,proliferation,postmenopausal osteoporosis,bone,osteoblast differentiation,long noncoding rna。去除与文章主题直接相关的关键词,综合关键词共现图、共现频率及中心性可知,“osteogenic differentiation (成骨分化)”“expression(表达)”“bone formation(骨形成)”和“mesenchymal stem cells(间充质干细胞)”处于该研究领域较为核心的地位。 关键词聚类是指某一研究领域内具有相似研究主题的关键词形成的网络集群,可以反映出该研究领"
域的结构体系[25]。运行Cite Space 进行关键词聚类分析,可将骨质疏松症相关长链非编码RNA有关研究分为10个不同的集群(前5个聚类的关键词见表4):#0 osteoclast differentiation(破骨细胞分化)、#1 cell differentiation(细胞分化)、#2 osteogenic differentiation(成骨分化)、#3 adipogenic differentiation(成脂分化)、#4 osteogenic differentiation(成骨分化)、#5 bone resorption(骨吸收)、#6 bone formation(骨形成)、#7 osteoblast differentiation(成骨细胞分化)、#8 bone homeostasis(骨稳态)、#9 loci(位点),其中聚类的序数按聚类大小排列,序数越小,聚类越大[26]。绘制出关键词聚类可视化图(图6),图中聚类模块化Q=0.512 4,均轮廓值S=0.798,Q > 0.3,S > 0.7,说明聚类结构显著,可信服[27]。图中多个聚类交叉重叠,可知骨质疏松症相关长链非编码RNA研究之间联系紧密。结果归纳可知,长链非编码RNA在骨质疏松症领域的研究主要围绕成骨细胞的分化、骨形成及骨吸收等方面展开。 关键词突现是某一时间段内该关键词使用频次骤增,可通过研究该关键词的起止时间、持续时间及突现强度,反映研究领域的历史脉络以及未来趋势[28-30],关键词的时间线图有助于从时间维度可视化阶段性热点和方向。通过Cite Space 对文献进行关键词突现分析,生成 25个突现关键词,"
[1] 中华医学会骨质疏松和骨矿盐疾病分会,章振林.原发性骨质疏松症诊疗指南(2022)[J].中国全科医学,2023,26(14):1671-1691. [2] COMPSTON JE, MCCLUNG MR, LESLIE WD. Osteoporosis. Lancet. 2019;393(10169): 364-376. [3] 胡世莲,王静,程翠,等.中国居民慢性病的流行病学趋势分析[J].中国临床保健杂志,2020,23(3):289-294. [4] BRIDGES MC, DAULAGALA AC, KOURTIDIS A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. [5] HERMAN AB, TSITSIPATIS D, GOROSPE M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022; 82(12):2252-2266. [6] SUN H, PENG G, WU H, et al. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep. 2020;13(1):15-21. [7] SUN Y, CAI M, ZHONG J, et al. The long noncoding RNA lnc-ob1 facilitates bone formation by upregulating Osterix in osteoblasts. Nat Metab. 2019;1(4):485-496. [8] TENG Z, ZHU Y, HAO Q, et al. Long non-coding RNA taurine upregulated gene 1 is downregulated in osteoporosis and influences the osteogenic differentiation of bone marrow mesenchymal stem cells. PeerJ. 2021;9:e11251. [9] KO NY, CHEN LR, CHEN KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci. 2020;21(14): 4886. [10] FITTIPALDI S, VISCONTI VV, TARANTINO U, et al. Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics. 2020;12(22):2035-2049. [11] 冉仁国,张岱阳,李贺伟.Ⅰ型骨质疏松症患者长链非编码RNA WT1-AS与骨密度关系[J].脊柱外科杂志,2024,22(3):158-163. [12] 唐星,刘瑞端.骨质疏松相关长链非编码RNA的研究进展[J].中国现代医学杂志, 2023,33(15):69-75. [13] ZHAO W, WANG G, ZHOU C, et al. The regulatory roles of long noncoding RNAs in osteoporosis. Am J Transl Res. 2020;12(9): 5882-5907. [14] ZHANG Q, XIAO Y, LIU Y, et al. Visualizing the intellectual structure and evolution of carbon neutrality research: a bibliometric analysis. Environ Sci Pollut Res Int. 2023; 30(30):75838-75862. [15] CHEN CM. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci. 2006;57(3):359-377. [16] 李仁辉,王广,诸战诞,等.蓝藻溶藻细菌研究现状的可视化分析[J].河南师范大学学报(自然科学版),2024,52(2): 111-122. [17] 章晓云,李坤健,莫坚,等.绝经后骨质疏松症动物模型研究现状及趋势的文献计量可视化分析[J].中国组织工程研究, 2025,29(14):3070-3080. [18] TONG X, GU PC, XU SZ, et al. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 2015;79(5):732-737. [19] WANG Q, LI Y, ZHANG Y, et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother. 2017; 89:1178-1186. [20] HUANG Y, ZHENG Y, JIA L, et al. Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF-β1/Smad3/HDAC Signaling Pathway by Deriving miR-675. Stem Cells. 2015;33(12):3481-3492. [21] GAO Y, XIAO F, WANG C, et al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2018;119(8):6986-6996. [22] YANG Y, YUJIAO W, FANG W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 2020;53(1):40. [23] SILVA AM, MOURA SR, TEIXEIRA JH, et al. Long noncoding RNAs: a missing link in osteoporosis. Bone Res. 2019;7:10. [24] 邹起平,周宾宾,林春婷,等.基于CiteSpace对胸腰椎骨折治疗和康复研究热点与前沿分析[J].中国医药导报,2023, 20(36):84-88+94. [25] 中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318. [26] GUERMAZI A, TANNOURY C, KOMPEL AJ, et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology. 2022;302(3):627-636. [27] 白丹阳,付阳阳,沈永红.基于CiteSpace骨质疏松性脊柱压缩性骨折术后康复的研究热点及前沿分析[J].循证护理,2024, 10(17):3129-3134. [28] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究, 2015,33(2):242-253. [29] 潘荣佳,桂思杰,何玉莲,等.基于CiteSpace的髋部骨折术后康复研究热点及前沿分析[J].军事护理,2023,40(2):76-79. [30] 张强,朱婵.近5年骨质疏松英文文献的计量学及可视化分析:Web of Science来源数据[J].中国组织工程研究,2020, 24(17):2752-2758. [31] YIN C, TIAN Y, YU Y, et al. Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res. 2021;163:105230. [32] WANG Y, WANG K, HU Z, et al. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis. 2018;9(11):1107. [33] LUO W, ZHANG N, WANG Z, et al. LncRNA USP2-AS1 facilitates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting KDM3A/ETS1/USP2 to activate the Wnt/β-catenin signaling pathway. RNA Biol. 2024;21(1):1-13. [34] WU Z, SHI M, ZHAO X, et al. LINC00963 Represses Osteogenic Differentiation of hBMSCs via the miR-10b-5p/RAP2A/AKT Axis. Int J Sports Med. 2024;45(11):856-866. [35] LIU S, SUN YP, GAO XL, et al. Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis. Neural Regen Res. 2019;14(9):1643-1650. [36] ZHOU X, KANG C, HU Y, et al. Study on insulin resistance and ischemic cerebrovascular disease: A bibliometric analysis via CiteSpace. Front Public Health. 2023;11:1021378. [37] 高丽,高龙.基于CiteSpace软件的CT灌注成像研究热点与趋势分析[J].中国医学影像学杂志,2023,31(7):776-780. [38] 沈鹏,余帅江,卓秀建,等.基于CiteSpace的国内昏迷促醒研究计量学分析[J].中国康复医学杂志,2021,36(2):251-255. [39] 冯媛媛,鲍勇.基于Citespace的中国康复医联体的前沿与热点分析[J].中国康复医学杂志,2022,37(1):139-143. [40] 薛夏利,邓钟义,孙君志,等.康复机器人领域10年研究热点:基于Web of Science数据库的文献计量学分析[J].中国组织工程研究,2022,26(14):2214-2222. |
[1] | Liang Haobo, Wang Zeyu, Ma Wenlong, Liu Hao, Liu Youwen. Hot issues in the field of joint revision: infection, rehabilitation nursing, bone defect, and prosthesis loosening [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1963-1971. |
[2] | Chen Shuai, Jin Jie, Han Huawei, Tian Ningsheng, Li Zhiwei . Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1556-1564. |
[3] | Xie Liugang, Cui Shuke, Guo Nannan, Li Aoyu, Zhang Jingrui. Research hotspots and frontiers of stem cells for Alzheimer’s disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1475-1485. |
[4] | Chang Jinxia, Liu Yufei, Niu Shaohui, Wang Chang, Cao Jianchun. Visualization analysis of macrophage polarization in tissue repair process [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1486-1496. |
[5] | Li Huijun, Li Huangyan, Zhang Yeting. Physical activity and cognition in older adults: research hotspot and topic evolution [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1073-1080. |
[6] | Dang Xiaowen, Huang Hailiang, Huang Lei, Wang Yajie . Research frontiers and hotspots of carbon nanomaterials in biomedical field over the past 10 years [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 752-760. |
[7] | Guo Haizhen, Cong Zidong, Zhao Yuke, Li Xiaofeng, Yu Lu, Qian Shule, Wang Runying, Du Wuxun. Development of patch clamp technology in the past 10 years: visual analysis based on CiteSpace and VOSviewer [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6717-6726. |
[8] | Song Haoran, Zhang Yuqiang, Gu Na, Zhi Xiaodong, Wang Wei. Visualization analysis of artificial intelligence in bone trauma research based on Citespace [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 493-502. |
[9] | Xu Qiang, Qin Jialin, Lian Zeshuang, Wang Aoting, Li Ding, Wang Ye, Wang Junfang. Visual analysis of hot spots and trends in the study of ligamentum flavum ossification [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 628-636. |
[10] | Zheng Xiaodong, Gao Shan, Han Wenjin, Liu Lijun, Jia Menglong, Yu Longtan. Visual analysis of treatment of adolescent idiopathic scoliosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 645-653. |
[11] | Liu Jian, Liu Qing, Huang Ye, Cao Guanglei, Liu Yuan, Song Qingpeng. Growth factors promote knee cartilage regeneration: a bibliometric analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(29): 6351-6359. |
[12] | Tang Zhi, Shao Yang, Li Shaoshuo, Qi Shubin, Lu Hengyang, Wu Mao, Yang Junfeng, Wang Jianwei. Single-cell sequencing reveals heterogeneity of B cells in osteoporosis patients and their interactions with osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(26): 5501-5510. |
[13] | Zeng Hao, Zou Shunyi, Li Zhengpeng, Chai Yuan, Huang Yourong, Zhang Xiaoyun. Intestinal flora regulates bone metabolism: a visual analysis of literature from the Web of Science Core Collection [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(26): 5652-5661. |
[14] | Tian Hao, Chen Dingding, Wang Deng, Ye Qiang. Research hotspots, frontier changes, and trend prospects of neuromuscular training [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5148-5157. |
[15] | Zou Shunyi, Chai yuan, Li Kunjian. Involvement of macrophage polarization in osteoarticular diseases: a visual analysis based on SCI-Expanded information [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5245-5253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||