Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (32): 6905-6912.doi: 10.12307/2025.922
Previous Articles Next Articles
Lei Qi1, 2, Zhao Bingbing2, Luo Hong3, Chen Qiang4, Jiang Yan1, 2
Received:
2024-09-24
Accepted:
2024-11-25
Online:
2025-11-18
Published:
2025-04-26
Contact:
Jiang Yan, MD, Professor, Master’s supervisor, Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550028, Guizhou Province, China; Department of Clinical Microbiology and Immunology, School of Medical Laboratory Medicine, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
About author:
Lei Qi, Master candidate, Laboratorian in charge, Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550028, Guizhou Province, China; Department of Clinical Microbiology and Immunology, School of Medical Laboratory Medicine, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
Supported by:
CLC Number:
Lei Qi, Zhao Bingbing, Luo Hong, Chen Qiang, Jiang Yan. Influenza A virus recombinant hemagglutinin 1 induces the production of beta-defensin and interferon-gamma in mouse tracheal epithelial cells[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6905-6912.
2.2 小鼠气管上皮细胞中β-防御素 mRNA的表达 qRT-PCR法检测重组血凝素1与甲型流感病毒对各组小鼠气管上皮细胞中β-防御素2、β-防御素3、β-防御素4 mRNA表达的影响。随着重组血凝素1作用于小鼠气管上皮细胞时间的增加,β-防御素2、β-防御素3、β-防御素4的mRNA表达量呈增加趋势,β-防御素3、β-防御素4的mRNA表达量较β-防御素2增加更为显著,24 h时表达量变化最为明显。同一时间点比较,4 h时以β-防御素4的表达量升高最多,其中以重组血凝素1 +甲型流感病毒组的表达量增加最为显著;24 h时以β-防御素3的表达量升高最多,其中以重组血凝素1 +甲型流感病毒组的表达量增加最为显著,见图2。"
2.4 小鼠气管上皮细胞中γ-干扰素mRNA和蛋白的表达 2.4.1 γ-干扰素 mRNA的表达 重组血凝素1与甲型流感病毒作用各实验组4,8,24 h后,图4A可见,重组血凝素1单独作用于细胞不同时间段后,细胞中γ-干扰素的mRNA表达量均增加(P < 0.05)。重组血凝素1与甲型流感病毒联合使用时,细胞产生的γ-干扰素的表达量均比甲型流感病毒单独使用时增加(P < 0.05)。重组血凝素1与灭活甲型流感病毒联合使用时,γ-干扰素的表达量仅在24 h时可见显著差异(P < 0.05),4 h和8 h时略增加,但差异不明显(P > 0.05)。 2.4.2 γ-干扰素的蛋白表达 图4B,C可见,重组血凝素1单独作用于细胞后的4,8,24 h后,细胞中γ-干扰素的蛋白表达水平均增加。当重组血凝素1与甲型流感病毒或灭活后的甲型流感病毒联合使用时,细胞中γ-干扰素的蛋白表达水平比病毒单独使用时增加显著(P < 0.05)。"
[1] 赵兵兵,朱颜鑫,牟秋菊,等.基于p38MAPK信号因子重组甲型流感病毒M1/2诱导气管上皮细胞产生γ干扰素的研究[J].中国病原生物学杂志,2017,12(3):201-208. [2] 杨小余,马贵凤,唐源,等.肝素酶在人β-防御素-3抗甲型流感病毒的作用研究[J].中国病原生物学杂志,2022,17(1):14-17+21. [3] MORENS DM, TAUBENBERGER JK, FAUCI AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe. 2023;31(1):146-157. [4] JIANG H, ZHANG Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol J. 2023; 20(1):193. [5] KEILMAN LJ. Seasonal Influenza (Flu). Nurs Clin North Am. 2019;54(2): 227-243. [6] DAVE K, LEE PC. Global Geographical and Temporal Patterns of Seasonal Influenza and Associated Climatic Factors. Epidemiol Rev. 2019;41(1): 51-68. [7] QIN T, CHEN Y, HUANGFU D, et al. PA-X protein of H1N1 subtype influenza virus disables the nasal mucosal dendritic cells for strengthening virulence. Virulence. 2022;13(1):1928-1942. [8] KESAVARDHANA S, MALIREDDI RKS, BURTON AR, et al. The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem. 2020;295(24):8325-8330. [9] DHARMAPALAN D. Influenza. Indian J Pediatr. 2020;87:828-832. [10] LIANG Y. Pathogenicity and virulence of influenza. Virulence. 2023; 14(1):2223057. [11] MALEKI F, WELCH V, LOPEZ SMC, et al. Understanding the Global Burden of Influenza in Adults Aged 18–64 years: A Systematic Literature Review from 2012 to 2022. Adv Ther. 2023;40(10):4166-4188. [12] WHITE MC, LOWEN AC. Lowen. Implications of segment mismatch for influenza A virus evolution. J Gen Virol. 2018;99(1):3-16. [13] WANG Y, TANG CY, WAN XF.Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem. 2022;414(9):2841-2881. [14] LIU T, WANG Y, TAN TJC, et al. The evolutionary potential of influenza A virus hemagglutinin is highly constrained by epistatic interactions with neuraminidase. Cell Host Microbe. 2022;30(10):1363-1369.e4. [15] HAN J, PEREZ J, SCHAFER A, et al. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr Med Chem. 2018;25(38):5115-5127. [16] ZHAO X, LIN X, LI P, et al. Expanding the tolerance of segmented Influenza A Virus genome using a balance compensation strategy. PLoS Pathog. 2022;18(8):e1010756. [17] TIAN WJ, WANG XJ. Broad-Spectrum Antivirals Derived from Natural Products. Viruses. 2023;15(5):1100. [18] GAO N, REZAEE F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics. 2022;14(12): 2619. [19] BIONDO C, LENTINI G, BENINATI C, et al. The dual role of innate immunity during influenza. Biomed J. 2019;42(1):8-18. [20] SARVESTANI ST, MCAULEY JL. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res. 2017;148:32-42. [21] KALENIK BM, GÓRA-SOCHACKA A, SIRKO A. Β-defensins-Underestimated peptides in influenza combat. Virus Res. 2018;247:10-14. [22] ZHAO H, ZHAO S, WANG S, et al. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol. 2024;227:116451. [23] CASAL D, IRIA I, RAMALHO JS, et al. BD-2 and BD-3 increase skin flap survival in a model of ischemia and Pseudomonas aeruginosa infection. Sci Rep. 2019;9(1):7854. [24] MCGRATH L, O’KEEFFE J, SLATTERY O. Antimicrobial peptide gene expression in Atlantic salmon (Salmo salar) seven days post-challenge with Neoparamoeba perurans. Dev Comp Immunol. 2022;127:104287. [25] SHI X, NI H, TANG L, et al. Comprehensive Gene Analysis Reveals Cuproptosis-Related Gene Signature Associated with M2 Macrophage in Staphylococcus aureus-Infected Osteomyelitis. J Inflamm Res. 2024; 17:3057-3077. [26] VAN DIJK A, GUABIRABA R, BAILLEUL G,et al. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol. 2023;157:53-69. [27] QUINTEIRO-FILHO WM, CALEFI AS, CRUZ DSG, et al. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol. 2017;186:19-28. [28] SU G, XIE K, CHEN D, et al. Differential expression, molecular cloning, and characterization of porcine beta defensin 114. J Anim Sci Biotechnol. 2019;10:60. [29] GONG T, LI W, WANG Y, et al. Expression of mouse beta defensin 2 in escherichia coli and its broad-spectrum antimicrobial activity.Braz J Microbiol. 2011;42(3):1180-1187. [30] GONG T, JIANG Y, WANG Y, et al. Recombinant mouse beta-defensin 2 inhibits infection by influenza A virus by blocking its entry. Arch Virol. 2010;155(4):491-498. [31] LI Q, ZHANG M, SUN J, et al. Porcine β-defensin-2 alleviates aflatoxin B1 induced intestinal mucosal damage via ROS-Erk1/2 signaling pathway. Sci Total Environ. 2023;905:167201. [32] JIANG Y, WANG Y, KUANG Y, et al. Expression of mouse beta-defensin-3 in MDCK cells and its anti-influenza-virus activity. Arch Virol. 2009; 154(4):639-647. [33] JIANG Y, YANG D, LI W, et al. Antiviral Activity of Recombinant Mouse β-defensin 3 against Influenza a Virus in vitro and in vivo. Antivir Chem Chemother. 2012;22(6):255-262. [34] JIANG Y, YI X, LI M, et al. Antimicrobial activities of recombinant mouse β-defensin 3 and its synergy with antibiotics. J Mater Sci Mater Med. 2012;23(7):1723-1728. [35] ZHAO H, ZHOU J, ZHANG K, et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep. 2016;6:22008.
[36] LEMESSURIER KS, LIN Y, MCCULLERS JA, et al. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral Res. 2016;133:208-217. [37] KAK G, RAZA M, TIWARI BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts. 2018;9(1):64-79. [38] SAFONT G, VILLAR-HERNÁNDEZ R, SMALCHUK D, et al. Measurement of IFN-γ and IL-2 for the assessment of the cellular immunity against SARS-CoV-2. Sci Rep. 2024;14(1):1137. [39] SCHMIT T, GUO K, TRIPATHI JK, et al. Interferon-γ promotes monocyte-mediated lung injury during influenza infection. Cell Rep. 2022;38(9):110456. [40] BUSNADIEGO I, FERNBACH S, POHL MO, et al. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. mBio. 2020;11(5):e01928-20. [41] QIAN G, ZHU L, LI G, et al. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol. 2021;12:742542. [42] SODEIFIAN F, NIKFARJAM M, KIAN N, et al. The role of type I interferon in the treatment of COVID‐19. J Med Virol. 2022;94(1):63-81. [43] 祝洁,朱颜鑫,曹慧军,等.重组甲型流感病毒基质蛋白1和2通过ERK信号因子诱导小鼠气管上皮细胞产生IFN-γ[J].病毒学报, 2018,34(5):489-496. [44] 唐源,祝洁,杨小余,等.人β防御素3和γ干扰素在MAPK信号通路中的相互诱导及联合抗甲型流感病毒的机制[J].贵州医科大学学报,2023,48(4):373-382. [45] 马贵凤,祝洁,曹慧军,等.EGCG通过p38信号因子诱导IFN-β抗甲型流感病毒感染的研究[J].中国现代应用药学,2021,38(6):661-666. [46] KHALIL AM, MARTINEZ-SOBRIDO L, MOSTAFA A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol. 2024;13:1232772. [47] WU NC, WILSON IA. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb Perspect Med. 2020;10(8):a038778. [48] ZHAO C, PU J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses. 2022;14(10):2141. [49] WU NC, WILSON IA. Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses. 2020;12(9):1053. [50] WU NC, WILSON IA. A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. J Mol Biol. 2017;429(17):2694-2709. [51] CIMINSKI K, SCHWEMMLE M. Bat-Borne Influenza A Viruses: An Awakening. Cold Spring Harb Perspect Med. 2021;11(2):a038612. [52] PÉREZ-RUBIO G, PONCE-GALLEGOS MA, DOMÍNGUEZ-MAZZOCCO BA, et al. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1. Viruses. 2021;13(2):344. [53] JIAO C, WANG B, CHEN P, et al. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol. 2023;14:1086297. [54] FUKUYAMA H, SHINNAKASU R, KUROSAKI T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol Rev. 2020;296(1):132-141. [55] WANG W, SONG HS, KELLER PW, et al. Conformational Stability of the Hemagglutinin of H5N1 Influenza A Viruses Influences Susceptibility to Broadly Neutralizing Stem Antibodies. J Virol. 2018;92(12):e00247-18. [56] GRIFFIN EF, TOMPKINS SM. Fitness Determinants of Influenza A Viruses. Viruses. 2023;15(9):1959. [57] ZHAO Y, CHEN P, HU Y, et al. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect. 2024;13(1): 2284301. [58] BEAN R, GIURGEA LT, HAN A, et al. Mucosal correlates of protection after influenza viral challenge of vaccinated and unvaccinated healthy volunteers. mBio. 2024;15(2):e0237223. [59] ZHAI YJ, FENG Y, MA X, et al. Defensins: defenders of human reproductive health. Hum Reprod Update. 2023;29(1):126-154. [60] GURYANOVA SV, OVCHINNIKOVA TV. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides.Int J Mol Sci. 2022;23(5):2499. [61] DUARTE-MATA DI, SALINAS-CARMONA MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol. 2023;14:1119574. [62] DAS S, PRADHAN C, PILLAI D. β-Defensin: An adroit saviour in teleosts.Fish Shellfish Immunol. 2022;123:417-430. [63] RYAN LK, DAI J, YIN Z, et al. Modulation of human β-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J Leukoc Biol. 2011;90(2):343-356. [64] KACZYNSKA A, KLOSINSKA M, JANECZEK K, et al. Promising Immunomodulatory Effects of Bacterial Lysates in Allergic Diseases. Front Immunol. 2022;13:907149. [65] BHARUCHA JP, SUN L, LU W, et al. Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages.Front Cell Infect Microbiol. 2021;11:535352. [66] NGUYEN AT, KIM M, KIM YE, et al. MSF Enhances Human Antimicrobial Peptide β-Defensin (HBD2 and HBD3) Expression and Attenuates Inflammation via the NF-κB and p38 Signaling Pathways. Molecules. 2023;28(6):2744. [67] CHO BH, KIM J, JANG YS. The Papain-like Protease Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Conjugated with Human Beta-Defensin 2 and Co1 Induces Mucosal and Systemic Immune Responses against the Virus. Vaccines (Basel). 2024;12(4):441. [68] LI S, MU R, GUO X. Defensins regulate cell cycle: Insights of defensins on cellular proliferation and division. Life Sci. 2024;349:122740. [69] HEIN MJA, KVANSAKUL M, LAY FT, et al. Defensin–lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochem Soc Trans. 2022;50(1):423-437. [70] BARTHOLD L, HEBER S, SCHMIDT CQ, et al. Human α-Defensin-6 Neutralizes Clostridioides difficile Toxins TcdA and TcdB by Direct Binding. Int J Mol Sci. 2022;23(9):4509. [71] BRICE DC, DIAMOND G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem. 2020;27(9):1420-1443. [72] SATCHANSKA G, DAVIDOVA S, GERGOVA A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel). 2024;13(3):202. [73] URMI UL, VIJAY AK, KUPPUSAMY R, et al. A review of the antiviral activity of cationic antimicrobial peptides. Peptides. 2023;166:171024. [74] KOMPUINEN J, KESKIN M, YILMAZ D, et al. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells. 2023;12(6):830. [75] GULATI NM, MIYAGI M, WIENS ME, et al. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun. 2019;4(2):196-234. [76] XU D, LU W. Defensins: A Double-Edged Sword in Host Immunity. Front Immunol. 2020;11:764. [77] HOFFMANN AR, GUHA S, WU E, et al. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J Virol. 2020;94(23):e01682-20. [78] SHARTOUNY JR, JACOB J. Mining the tree of life: Host defense peptides as antiviral therapeutics. Semin Cell Dev Biol. 2019;88:147-155. [79] MOOKHERJEE N, ANDERSON MA, HAAGSMAN HP, et al. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19(5):311-332. [80] AGAMENNONE M, FANTACUZZI M, VIVENZIO G, et al. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci. 2022;23(19):11433. [81] PENG G, TSUKAMOTO S, IKUTAMA R, et al. Human β-defensin-3 attenuates atopic dermatitis–like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J Clin Invest. 2022;132(17):e156501. [82] HUANG J, QI Y, WANG A, et al. Porcine β-defensin 2 inhibits proliferation of pseudorabies virus in vitro and in transgenic mice. Virol J. 2020;17(1):18. [83] WILSON SS, WIENS ME, SMITH JG. Antiviral Mechanisms of Human Defensins. J Mol Biol. 2013;425(24):4965-4980. [84] HUOT N, PLANCHAIS C, ROSENBAUM P, et al. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol. 2023;24(12):2068-2079. [85] AHMAD I, VALVERDE A, SIDDIQUI H, et al. Viral MicroRNAs: Interfering the Interferon Signaling. Curr Pharm Des. 2020;26(4):446-454. [86] AMPOMAH PB, LIM LHK. Influenza A virus-induced apoptosis and virus propagation.Apoptosis. 2020;25(1-2):1-11. [87] BENCI JL, JOHNSON LR, CHOA R, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178(4):933-948.e14. [88] XIA C, WANG T, HAHM B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int J Mol Sci. 2024;25(9):4677. [89] BARMAN TK, HUBER VC, BONIN JL, et al. Viral PB1-F2 and host IFN-γ guide ILC2 and T cell activity during influenza virus infection.Proc Natl Acad Sci U S A. 2022;119(8):e2118535119. |
[1] | Wan Lingling, Wu Mengying, Zhang Yujiao, Luo Qingqing. Inflammatory factor interferon-gamma affects migration and apoptosis of human vascular smooth muscle cells through pyroptosis pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1422-1428. |
[2] | Fang Yuting, Peng Hong, Pang Yujie. Inflammatory signaling pathways in traditional Chinese medicine for treating fever after lumbar interbody fusion surgery [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4568-4575. |
[3] | Yang Kun, Zhang Rong, Wu Yue, Lei Xiaoping, Shen Yunchuan, Kang Lan, Dong Wenbin. Construction of a mouse model for alveolar type II epithelial cell-specific knockout of SENP1 gene based on the Cre-loxP recombinase system [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 2943-2950. |
[4] | Cheng Xue, Jing Huanxi, Zhang Yunke, Fang Hong. Mechanism of Feibi prescription on mitochondrial apoptosis of alveolar epithelial cells in mice with pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2334-2339. |
[5] | Lin Shi, Yuan Jiayao, Lin Xiancan, Yang Binbin, Wu Jianjun, Dongzhi Zhuoma, Tang Zijia, Yang Zhijie, Wan Lei, Huang Hongxing. Diagnostic value of peripheral blood interferon-gamma and monocyte chemoattractant protein-1 in postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(2): 165-170. |
[6] | Zhou Ying, Zhang Huan, Liao Song, Hu Fanqi, Yi Jing, Liu Yubin, Jin Jide. Immunomodulatory effects of deferoxamine and interferon gamma on human dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1012-1019. |
[7] | Li Zhenxiang, Jiang Xiaokui, Shen Fangfang, Li Shaoshan. Immuoregulatory effects of colorectal cancer cell-derived exosomes on CD8+ T cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5002-5006. |
[8] | Wang Jie, Yu Limei. Immunomodulatory characteristics of mesenchymal stem cells mediated by inflammatory factors [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(13): 2108-2113. |
[9] | Huang Tian, Huang Xin, Lai Peilong, Geng Suxia, Chen Xiaomei, Wang Yulian, Guo Liyan, Zeng Gaochun, Han Fengzhen, Li Xiaohong, Du Xin, Weng Jianyu. Interferon-gamma combined with lipopolysaccharide polarizes human umbilical cord-derived mesenchymal stem cells to a MSC2 phenotype [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(13): 2020-2027. |
[10] | Tan Rong-bang, Shi Hong-can. Current research and application prospect of mesechymal stem cells in tissue-engineered trachea [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(10): 1884-1890. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 8
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||