Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (9): 1972-1980.doi: 10.12307/2025.243
Deng Keqi¹, Li Guangdi¹, ², Goswami Ashutosh¹, Liu Xingyu¹, He Xiaoyong¹
Received:
2024-01-09
Accepted:
2024-02-21
Online:
2025-03-28
Published:
2024-10-11
Contact:
Li Guangdi, MD, Chief physician, Master’s supervisor, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
About author:
Deng Keqi, Master candidate, Physician, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:
CLC Number:
Deng Keqi, Li Guangdi, Goswami Ashutosh, Liu Xingyu, He Xiaoyong. Screening and validation of Hub genes for iron overload in osteoarthritis based on bioinformatics[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1972-1980.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 筛选骨关节炎的差异表达基因 对GSE55235数据集中的10例骨关节炎患者和10例健康人群的基因表达数据进行差异基因分析。通过筛选P值经过校正后小于0.05且LogFC的绝对值大于1的差异基因,共得到了964个差异基因,其中包括366个上调基因和598个下调基因。图1为差异表达基因火山图,图2为差异表达基因热图。 2.2 交集得到骨关节炎与铁超载相关基因 通过查询GeneCards数据库,得到了831个与铁超载相关的基因。与之前得到的骨关节炎差异基因进行交集分析后,发现有51个基因与骨关节炎和铁超载相关,见图3。 2.3 GO和KEGG富集分析结果 对51个与骨关节炎和铁超载相关的基因进行了GO和KEGG富集分析,发现骨关节炎铁超载基因在生物过程中主要参与白细胞迁移(Leukocyte migration)、白细胞迁移的正向调控(Positive regulation of leukocyte migration)、对肿瘤坏死因子的反应(Response to tumor necrosis factor)、调节白细胞的迁移(Regulation of leukocyte migration)及白细胞与细胞的黏附(Regulation of leukocyte migration)过程;细胞成分显示其主要存在于包被囊泡(Coated vesicle)、包被囊泡膜(Coated vesicle membrane)、网格蛋白包被囊泡(Clathrin?coated vesicle)、低-密度脂蛋白颗粒(Low?density lipoprotein particle)及乳糜微粒(Chylomicron);分子功能上,其在细胞因子受体结合(Cytokine receptor binding)、趋化因子受体结合(CCR chemokine receptor binding)、细胞因子活性(Cytokine activity)、生长因子受体结合(Growth factor receptor binding)及寡糖结合(Oligosaccharide binding)中发生作用,见图4。"
根据KEGG富集分析结果显示,骨关节炎铁超载基因在肿瘤坏死因子信号通路(TNF signaling pathway)、 脂质和动脉粥样硬化(Lipid and atherosclerosis)、人巨细胞病毒感染(Human cytomegalovirus infection)、糖尿病并发症中的AGE-RAGE信号通路(AGE-RAGE signaling pathway in diabetic Complications),以及流体剪切应力和动脉粥样硬化(Fluid shear stress and atherosclerosis)中显著富集,见图5。 2.4 构建PPI网络并筛选Hub基因 利用String数据库,构建了一个包含40个节点和149条边的共同疾病基因蛋白质相互作用网络,见图6。随后进行网络拓扑分析,采用5种不同的计算方法筛选出了两组排名前10位的基因。最后通过对两组取交集取出了这5种计算方法中共同存在的基因,获得了5个具有重要作用的Hub基因,见图7。"
2.5 骨关节炎铁超载Hub基因动物实验验证结果 2.5.1 大鼠膝关节的病理学染色及OARSI评分 病理学切片染色结果见图8,对照组中的软骨呈现出完好的形态和结构,细胞整齐排列,基质均匀染色;然而,在骨关节炎组中,软骨的形态结构已经被破坏,基质大量流失,并形成了空洞,软骨细胞也大量凋亡。骨关节炎组和对照组的OARSI评分分别为(15.33±2.19)分和0分,组间比较差异有显著性意义(P < 0.05),由此可判断SD大鼠的骨关节炎造模实验成功。 2.5.2 Hub基因的相对表达量 Hub基因在大鼠膝关节软骨样本的相对表达量见图9,骨关节炎组中ICAM-1,TNFSF11,MYC和白细胞介素6基因相比于对照组呈高表达状态(P < 0.05),而JAK2基因相比于对照组呈低表达状态(P < 0.05)。"
[1] HUNTER DJ, MARCH L, CHEW M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396(10264): 1711-1712. [2] TAMPIERI A, SANDRI M, IAFISCO M, et al. Nanotechnological approach and bio-inspired materials to face degenerative diseases in aging. Aging Clin Exp Res. 2021; 33(4):805-821. [3] KATZ JN, ARANT KR, LOESER RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6): 568-578. [4] CAMASCHELLA C, NAI A, SILVESTRI L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020; 105(2):260-272. [5] BRISSOT P, TROADEC MB, LORÉAL O, et al. Pathophysiology and classification of iron overload diseases; update 2018. Transfus Clin Biol. 2019;26(1):80-88. [6] 黎少聪,何琪,潘兆丰,等.Micro-CT评价铁超载影响膝骨关节炎模型小鼠软骨类组织的变化[J].中国组织工程研究, 2023,27(29):4658-4663. [7] CAI C, HU W, CHU T. Interplay between iron overload and osteoarthritis: clinical significance and cellular mechanisms. Front Cell Dev Biol. 2021;9:817104. [8] BURTON LH, RADAKOVICH LB, MAROLF AJ, et al. Systemic iron overload exacerbates osteoarthritis in the strain 13 guinea pig. Osteoarthritis Cartilage. 2020;28(9): 1265-1275. [9] WANG J, CHEN L, JIN S, et al. MiR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis. Acta Biochim Biophys Sin (Shanghai). 2016;48(10):923-929. [10] PRITZKER KP, GAY S, JIMENEZ SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14(1):13-29. [11] HU F, HU W, XU H. Schisandrin B alleviates LPS induced mitochondrial damage in C28I2 cells. J Membr Biol. 2024. doi:10.1007/s00232-023-00299-5. [12] OO WM. Prospects of disease-modifying osteoarthritis drugs. Clin Geriatr Med. 2022;38(2):397-432. [13] RADUSHKEVITZ-FRISHMAN T, CHARNI-NATAN M, GOLDSTEIN I. Dynamic chromatin accessibility during nutritional iron overload reveals a BMP6-independent induction of cell cycle genes. J Nutr Biochem. 2023; 119:109407. [14] SIMÃO M, GAVAIA PJ, CAMACHO A, et al. Intracellular iron uptake is favored in Hfe-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype. Biofactors. 2019;45(4):583-597. [15] GUILLEM-LLOBAT P, MARÍN M, ROULEAU M, et al. New insights into the pro-inflammatory and osteoclastogenic profile of circulating monocytes in osteoarthritis patients. Int J Mol Sci. 2024;25(3):1710. [16] KOURTZELIS I, MITROULIS I, VON RENESSE J, et al. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol. 2017;102(3): 677-683. [17] WANG Z, WANG B, ZHANG J, et al. Chemokine (C-C Motif) ligand 2/chemokine receptor 2 (CCR2) axis blockade to delay chondrocyte hypertrophy as a therapeutic strategy for osteoarthritis. Med Sci Monit. 2021;27:e930053. [18] WANG R, LI J, XU X, et al. Andrographolide attenuates synovial inflammation of osteoarthritis by interacting with tumor necrosis factor receptor 2 trafficking in a rat model. J Orthop Translat. 2021;29:89-99. [19] 韩建建,徐鹏,韩礼纲,等.关节镜清理术联合透明质酸钠对膝骨关节炎病人关节液细胞间黏附分子1、白细胞介素6的影响[J].蚌埠医学院学报,2021,46(2): 222-225. [20] SCALZONE A, CERQUENI G, WANG XN, et al. A cytokine-induced spheroid-based in vitro model for studying osteoarthritis pathogenesis. Front Bioeng Biotechnol. 2023;11:1167623. [21] WANG Y, LIU J, HUANG B, et al. Mathematical modeling and application of IL-1β/TNF signaling pathway in regulating chondrocyte apoptosis. Front Cell Dev Biol. 2023;11:1288431. [22] HEIDARI B, BABAEI M, YOSEFGHAHRI B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review. Mediterr J Rheumatol. 2021;32(3):227-236. [23] IIJIMA H, GILMER G, WANG K, et al. Meta-analysis integrated with multi-omics data analysis to elucidate pathogenic mechanisms of age-related knee osteoarthritis in mice. J Gerontol A Biol Sci Med Sci. 2022;77(7):1321-1334. [24] ALVARADO-DÍAZ CP, NÚÑEZ MT, DEVOTO L, et al. Iron overload-modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertil Steril. 2015;103(2):439-447. [25] LEE KT, SU CH, LIU SC, et al. Cordycerebroside A inhibits ICAM-1-dependent M1 monocyte adhesion to osteoarthritis synovial fibroblasts. J Food Biochem. 2022;46(7):e14108. [26] LI M, XIAO YB, WANG XT, et al. Proline-serine-threonine phosphatase-interacting protein 2 alleviates diabetes mellitus-osteoarthritis in rats through attenuating synovial inflammation and cartilage injury. Orthop Surg. 2021;13(4):1398-1407. [27] CHANKAMNGOEN W, KRUNGCHANUCHAT S, THONGBUNCHOO J, et al. Extracellular Fe(2+) and Fe(3+) modulate osteocytic viability, expression of SOST, RANKL and FGF23, and fluid flow-induced YAP1 nuclear translocation. Sci Rep. 2023;13(1):21173. [28] PAN L, YANG F, CAO X, et al. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis. Front Endocrinol (Lausanne). 2023;14:1144258. [29] MANDALA A, CHEN WJ, ARMSTRONG A, et al. PPARα agonist fenofibrate attenuates iron-induced liver injury in mice by modulating the Sirt3 and β-catenin signaling. Am J Physiol Gastrointest Liver Physiol. 2021;321(4):G262-G269. [30] JIANG K, JIANG T, CHEN Y, et al. Mesenchymal stem cell-derived exosomes modulate chondrocyte glutamine metabolism to alleviate osteoarthritis progression. Mediators Inflamm. 2021; 2021:2979124. [31] WANG C, WANG X, SONG G, et al. A high-fructose diet in rats induces systemic iron deficiency and hepatic iron overload by an inflammation mechanism. J Food Biochem. 2021;45(1):e13578. [32] CHEN B, NING K, SUN ML, et al. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal. 2023;21(1):67. [33] DI PAOLA A, TORTORA C, ARGENZIANO M, et al. Emerging roles of the iron chelators in inflammation. Int J Mol Sci. 2022;23(14):7977. [34] HE J, WANG L, DING Y, et al. lncRNA FER1L4 is dysregulated in osteoarthritis and regulates IL-6 expression in human chondrocyte cells. Sci Rep. 2021;11(1): 13032. |
[1] | Ma Chi, Wang Ning, Chen Yong, Wei Zhihan, Liu Fengji, Piao Chengzhe. Application of 3D-printing patient-specific instruments combined with customized locking plate in opening wedge high tibial osteotomy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1863-1869. |
[2] | Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang. Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1913-1922. |
[3] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[4] | Sun Yundi, Cheng Lulu, Wan Haili, Chang Ying, Xiong Wenjuan, Xia Yuan. Effect of neuromuscular exercise for knee osteoarthritis pain and function: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1945-1952. |
[5] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[6] | Wang Peiguang, Zhang Xiaowen, Mai Meisi, Li Luqian, Huang Hao. Generalized equation estimation of the therapeutic effect of floating needle therapy combined with acupoint embedding on different stages of human knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1565-1571. |
[7] | Liu Lin, Liu Shixuan, Lu Xinyue, Wang Kan. Metabolomic analysis of urine in a rat model of chronic myofascial trigger points [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1585-1592. |
[8] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[9] | Zhao Jiacheng, Ren Shiqi, Zhu Qin, Liu Jiajia, Zhu Xiang, Yang Yang. Bioinformatics analysis of potential biomarkers for primary osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1741-1750. |
[10] | Chen Yueping, Chen Feng, Peng Qinglin, Chen Huiyi, Dong Panfeng . Based on UHPLC-QE-MS, network pharmacology, and molecular dynamics simulation to explore the mechanism of Panax notoginseng in treating osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1751-1760. |
[11] | Yang Zhihang, Sun Zuyan, Huang Wenliang, Wan Yu, Chen Shida, Deng Jiang. Nerve growth factor promotes chondrogenic differentiation and inhibits hypertrophic differentiation of rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1336-1342. |
[12] | Zhang Zhenyu, Liang Qiujian, Yang Jun, Wei Xiangyu, Jiang Jie, Huang Linke, Tan Zhen. Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1437-1447. |
[13] | Zhang Haojun, Li Hongyi, Zhang Hui, Chen Haoran, Zhang Lizhong, Geng Jie, Hou Chuandong, Yu Qi, He Peifeng, Jia Jinpeng, Lu Xuechun. Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1448-1456. |
[14] | Wang Mi, Ma Shujie, Liu Yang, Qi Rui. Identification and validation of characterized gene NFE2L2 for ferroptosis in ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1466-1474. |
[15] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||