Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (7): 1422-1428.doi: 10.12307/2025.004
Previous Articles Next Articles
Wan Lingling1, Wu Mengying2, Zhang Yujiao1, Luo Qingqing1
Received:
2023-10-19
Accepted:
2024-01-10
Online:
2025-03-08
Published:
2024-06-27
Contact:
Luo Qingqing, MD, Associate chief physician, Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
About author:
Wan Lingling, Master candidate, Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
Supported by:
CLC Number:
Wan Lingling, Wu Mengying, Zhang Yujiao, Luo Qingqing. Inflammatory factor interferon-gamma affects migration and apoptosis of human vascular smooth muscle cells through pyroptosis pathway[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1422-1428.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 干扰素γ显著增加血管平滑肌细胞的迁移能力 由图1可以看出,与对照组相比,10 ng/mL干扰素γ处理24 h后侵袭的细胞数量显著增加(对照组:70.87±5.17;干扰素γ组:112.10±5.17,P < 0.01),表明干扰素γ显著增加血管平滑肌细胞的迁移能力。 2.2 干扰素γ显著增加血管平滑肌细胞的凋亡率 由图2可以看出,与对照组相比,10 ng/mL 干扰素γ处理24 h后的血管平滑肌细胞与TUNEL荧光共定位现象明显增加;流式细胞术分析结果显示,与对照组相比,10 ng/mL 干扰素γ处理后血管平滑肌细胞凋亡率明显升高[对照组:(4.033±0.528)%;干扰素γ组:(6.073±0.528)%,P < 0.01]。 2.3 干扰素γ显著增加血管平滑肌细胞NLRP3、caspase-1 mRNA的表达 qPCR检测结果发现,血管平滑肌细胞经过干扰素γ处理后NLRP3、caspase-1 mRNA表达量均明显高于对照组。NLRP3 mRNA表达:对照组为1.000±1.479,干扰素γ组为16.930±1.479;caspase-1 mRNA表达:对照组为1.000±1.893,干扰素γ组为13.000±1.893,差异均有显著性意义(P < 0.05),见图3。 2.4 干扰素γ显著增加血管平滑肌细胞NLRP3、caspase-1、cleaved N-terminal GSDMD蛋白表达 Western blot检测结果显示,与对照组相比,干扰素γ组血管平滑肌细胞焦亡相关蛋白NLRP3、caspase-1、cleaved N-terminal GSDMD的表达均显著提高(NLRP3:对照组为0.230±0.011,干扰素γ组为0.613±0.011;caspase-1:对照组为0.330±0.013,干扰素γ组为0.680±0.013;cleaved N-terminal GSDMD:对照组为0.300±0.011,干扰素γ组为0.620±0.011),差异均有显著性意义(P < 0.000 1),见图4。"
PIJNENBORG R, VERCRUYSSE L, HANSSENS M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006; 27(9-10):939-958. [2] STAFF AC, FJELDSTAD HE, FOSHEIM IK, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895-S906. [3] SATO Y. Endovascular trophoblast and spiral artery remodeling. Mol Cell Endocrinol. 2020;503:110699. [4] MA Y, YU X, ZHANG L, et al. Uterine decidual niche modulates the progressive dedifferentiation of spiral artery vascular smooth muscle cells during human pregnancy. Biol Reprod. 2021;104(3): 624-637. [5] TAO H, LIU X, LIU X, et al. LncRNA MEG3 inhibits trophoblast invasion and trophoblast-mediated VSMC loss in uterine spiral artery remodeling. Mol Reprod Dev. 2019;86(6):686-695. [6] ROBSON A, LASH GE, INNES BA, et al. Uterine spiral artery muscle dedifferentiation. Hum Reprod. 2019;34(8):1428-1438. [7] XIE M, LI Y, MENG YZ, et al. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol. 2022;13:918550. [8] LIU Y, GAO S, ZHAO Y, et al. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front Immunol. 2021;12:663660. [9] GOLDMAN-WOHL D, GAMLIEL M, MANDELBOIM O, et al. Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. Am J Obstet Gynecol. 2019;221(3):183-193. [10] WANG S, CHEN C, SUN F, et al. Involvement of the Tim-3 Pathway in the Pathogenesis of Pre-Eclampsia. Reprod Sci. 2021;28(12):3331-3340. [11] LIU W, LIU X, LUO M, et al. dNK derived IFN-γ mediates VSMC migration and apoptosis via the induction of LncRNA MEG3: A role in uterovascular transformation. Placenta. 2017;50:32-39. [12] ROSNER D, STONEMAN V, LITTLEWOOD T, et al. Interferon-gamma induces Fas trafficking and sensitization to apoptosis in vascular smooth muscle cells via a PI3K- and Akt-dependent mechanism. Am J Pathol. 2006;168(6):2054-2063. [13] GOMEZ A, SERRANO A, SALERO E, et al. Tumor necrosis factor-alpha and interferon-gamma induce inflammasome-mediated corneal endothelial cell death. Exp Eye Res. 2021;207:108574. [14] ZHANG D, LI Y, DU C, et al. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med. 2022;20(1):363. [15] HUANG J, CHEN P, XIANG Y, et al. Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells. Int Immunopharmacol. 2022;107:108717. [16] YANG X, ZUO X, ZENG H, et al. IFN-γ Facilitates Corneal Epithelial Cell Pyroptosis Through the JAK2/STAT1 Pathway in Dry Eye. Invest Ophthalmol Vis Sci. 2023;64(3):34. [17] ARIMOTO KI, MIYAUCHI S, TROUTMAN TD, et al. Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis. Nat Commun. 2023;14(1):251. [18] LABZIN LI, LAUTERBACH MA, LATZ E. Interferons and inflammasomes: Cooperation and counterregulation in disease. J Allergy Clin Immunol. 2016;138(1):37-46. [19] WANG K, LI W, YU Q, et al. High Mobility Group Box 1 Mediates Interferon-γ-Induced Phenotypic Modulation of Vascular Smooth Muscle Cells. J Cell Biochem. 2017;118(3):518-529. [20] YU L, QIN L, ZHANG H, et al. AIP1 prevents graft arteriosclerosis by inhibiting interferon-γ-dependent smooth muscle cell proliferation and intimal expansion. Circ Res. 2011;109(4):418-427. [21] LIU H, NING F, LASH GE. Contribution of vascular smooth muscle cell apoptosis to spiral artery remodeling in early human pregnancy. Placenta. 2022;120:10-17. [22] LIU H, CHEN M, NING F, et al. Extravillous trophoblast cell-derived exosomes induce vascular smooth muscle cell apoptosis via a mechanism associated with miR-143-3p. Mol Hum Reprod. 2023;29(8): gaad026. [23] CHEN Z, WU M, HUANG H, et al. Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1. Reprod Sci. 2022;29(12):3413-3424. [24] LYALL F, ROBSON SC, BULMER JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62(6):1046-1054. [25] HAZAN AD, SMITH SD, JONES RL, et al. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro. Am J Pathol. 2010;177(2):1017-1030. [26] ASHKAR AA, DI SANTO JP, CROY BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192(2):259-270. [27] ZHAI Y, QIAO B, GAO F, et al. Type I, but not type II, interferon is critical in liver injury induced after ischemia and reperfusion. Hepatology. 2008;47(1):199-206. [28] SCHRODER K, HERTZOG PJ, RAVASI T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004; 75(2):163-189. [29] HU X, IVASHKIV LB. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity. 2009;31(4):539-550. [30] HAN J, WU M, LIU Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol. 2023;14: 1190333. [31] ZIMMER O, WALTER M, REMMERT M, et al. Impact of interferon-γ on the target cell tropism of nanoparticles. J Control Release. 2023; 362:325-341. [32] WEI XW, ZHANG YC, WU F, et al. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol. 2022;13:951482. [33] SMITH SD, DUNK CE, APLIN JD, et al. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009;174(5):1959-1971. [34] ASHKAR AA, CROY BA. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin Immunol. 2001;13(4):235-241. [35] POLLHEIMER J, KNÖFLER M. The role of the invasive, placental trophoblast in human pregnancy. Wien Med Wochenschr. 2012; 162(9-10):187-190. [36] WHITLEY GS, CARTWRIGHT JE. Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J Anat. 2009;215(1):21-26. [37] BULMER JN, INNES BA, LEVEY J, et al. The role of vascular smooth muscle cell apoptosis and migration during uterine spiral artery remodeling in normal human pregnancy. FASEB J. 2012;26(7): 2975-2985. [38] RAO Z, ZHU Y, YANG P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329. [39] KARKI R, SHARMA BR, TULADHAR S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021; 184(1):149-168.e17. [40] ZHU D, ZOU H, LIU J, et al. Inhibition of HMGB1 Ameliorates the Maternal-Fetal Interface Destruction in Unexplained Recurrent Spontaneous Abortion by Suppressing Pyroptosis Activation. Front Immunol. 2021;12:782792. [41] WEN R, LIU YP, TONG XX, et al. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol. 2022;12:962139. [42] LI Z, LIU W, FU J, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature. 2021;599(7884):290-295. [43] MINTON K. Pyroptosis heats tumour immunity. Nat Rev Immunol. 2020;20(5):274-275. [44] AI YL, WANG WJ, LIU FJ, et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P. Cell Res. 2023;33(12):904-922. [45] CHENG SB, NAKASHIMA A, HUBER WJ, et al. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis. 2019;10(12):927. [46] REDMAN CWG, STAFF AC, ROBERTS JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2S):S907-S927. [47] HAN Y, SUN HJ, TONG Y, et al. Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFκB-mediated NLRP3 expression in spontaneously hypertensive rats. J Nutr Biochem. 2019; 72:108212. [48] LIU J, YAN X, WANG Z, et al. Adipocyte factor CTRP6 inhibits homocysteine-induced proliferation, migration, and dedifferentiation of vascular smooth muscle cells through PPARγ/NLRP3. Biochem Cell Biol. 2021;99(5):596-605. [49] XU PP, WU J, ZHANG J, et al. Paclitaxel may inhibit migration and invasion of gastric cancer cells via nod-like receptor family pyrin domain-containing 3/caspase-1/Gasdermin E mediated pyroptosis pathway. Chem Biol Drug Des. 2024;103(1):e14325. |
[1] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[2] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[3] | Jin Kai, Tang Ting, Li Meile, Xie Yuan. Effects of conditioned medium and exosomes of human umbilical cord mesenchymal stem cells on proliferation, migration, invasion, and apoptosis of hepatocellular carcinoma cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1350-1355. |
[4] | Liu Zhezhe, Yu Meiqing, Wang Tingting, Zhang Min, Li Baiyan. Troxerutin modulates nuclear factor-kappaB signaling pathway to inhibit brain injury and neuronal apoptosis in cerebral infarction rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1137-1143. |
[5] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[6] | He Bo, Chen Wen, Ma Suilu, He Zhijun, Song Yuan, Li Jinpeng, Liu Tao, Wei Xiaotao, Wang Weiwei, Xie Jing . Pathogenesis and treatment progress of flap ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1230-1238. |
[7] | Liu Lingyun, He Guixin, Qin Weibin, Song Hui, Zhang Liwen, Tang Weizhi, Yang Feifei, Zhu Ziyi, Ou Yangbin . Improvement of myocardial injury by traditional Chinese medicine: mitochondrial calcium homeostasis mediates macrophage autophagy and pyroptosis pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1276-1284. |
[8] | Lan Shuangli, Xiang Feifan, Deng Guanghui, Xiao Yukun, Yang Yunkang, Liang Jie. Naringin inhibits iron deposition and cell apoptosis in bone tissue of osteoporotic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 888-898. |
[9] | Xu Fei, Yan Jinqiang, Chai Shoudong. Mechanical stress regulates apoptosis in vascular smooth muscle cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1064-1072. |
[10] | Ran Yaqin, Chen Xi, Xie Yanne, Yuan Jun. Mechanism and potential application strategies of pyroptosis in breast cancer treatment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7880-7888. |
[11] | Zhang Fei, Zuo Jun. Inhibition of hypertrophic scar in rats by beta-sitosterol-laden mesoporous silica nanoparticles [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7301-7309. |
[12] | Su Yongkun, Sun Hong, Liu Miao, Yang Hua, Li Qingsong. Development of novel antioxidants and antioxidant combination carried by nano-hydrogel systems in treatment of intervertebral disc degeneration [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7376-7384. |
[13] | Wang Kairu, Fu Shizhe, Li Jiahui, Yan Ru, Ma Yuru, Shi Bo, Ye Congyan , Yan Rui, Cong Guangzhi, Jia Shaobin. Spermidine/spermine N1-acetyltransferase 1 participates in vascular smooth muscle cell calcification [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6836-6842. |
[14] | Lei Qi, Zhao Bingbing, Luo Hong, Chen Qiang, Jiang Yan. Influenza A virus recombinant hemagglutinin 1 induces the production of beta-defensin and interferon-gamma in mouse tracheal epithelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6905-6912. |
[15] | Zhao Xuemei, Wang Rui, Ao · Wuliji, Bao Shuyin, Jiang Xiaohua. Effects of Agiophyllum Oligo Saccharides on inflammation and apoptosis of mouse synovial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6939-6946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||