Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (30): 4896-4901.doi: 10.12307/2024.625
Previous Articles Next Articles
Fan Guangya1, Su Wenshuo1, Zhong Musen1, Dong Liqiang2
Received:
2023-04-04
Accepted:
2023-09-02
Online:
2024-10-28
Published:
2023-12-28
Contact:
Dong Liqiang, Master, Chief physician, Professor, Second Department of Orthopedics and Traumatology, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
About author:
Fan Guangya, Master candidate, Second Clinical School of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
CLC Number:
Fan Guangya, Su Wenshuo, Zhong Musen, Dong Liqiang. Application of finite element analysis in lumbar biomechanics[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(30): 4896-4901.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
总体而言,有限元分析在腰椎疾患发病机制、腰椎手术的力学分析、腰椎疾患保守治疗的力学分析等方向有所应用,其中以腰椎手术的力学分析为主要应用方向,因而此文从以下几个方面进行综述。 2.1 有限元法在腰椎疾患发病机制中应用 2.1.1 退行性改变 临床上常见的腰椎退行性改变包括腰椎间盘突出、腰椎管狭窄、腰椎滑脱等,均可能造成腰背痛、放射痛、下肢麻木、跛行等临床症状,严重影响患者的生活质量。 腰椎间盘在腰椎运动时起到缓冲作用,避免因过度活动而造成机体损伤。纤维环是椎间盘中重要的承重结构,是由径向纤维和环向纤维构成的纤维网状结构。径向纤维能够降低椎间盘基质与环向纤维内部的局部应力,从而降低内部应力对椎间盘的损伤[6]。然而随着长期运动导致的载荷改变仍会造成腰椎间盘损伤,QASIM等[7]使用有限元法确定了在循环载荷下椎间盘的损伤起始于纤维环的后侧,并且损伤随着载荷循环次数的增加而加重。除长期循环载荷的影响外,骨骼质量也是导致腰椎间盘损伤的重要因素。有学者通过构建有限元模型发现,骨质疏松患者在屈伸、侧弯、轴向运动时腰椎的椎体及髓核各部分的应力均大于非骨质疏松患者[8],可见在相同运动下,骨质疏松患者相较于非骨质疏松患者更易发生损伤。LIAO[9]也通过有限元分析证实骨质疏松患者的相邻阶段应力明显增加,进而造成腰椎结构的不稳定。腰椎滑脱患者腰椎结构的异常会导致腰椎力学重新分布,这种错误的力学分布同样会造成腰椎失稳,加速病程的发展。NATARAJAN等[10]通过构建腰椎滑脱患者的三维有限元模型研究发现,在滑脱节段,椎间盘起主要承重作用,并且承受的应力随腰椎滑脱程度增加而增大。然而最新研究显示,相较于椎间盘,腰椎滑脱患者的小关节受累更为明显。通过构建L4-L5滑脱的腰椎有限元模型进行力学分析发现,小关节分布表的剪切应力是椎间盘的7.2倍,小关节为剪切应力的主要承载者;并且在所有方向的载荷下L5椎弓根峡部应力集中最为显著,且这种集中应力使滑脱有进一步增大的趋势[11-12]。 综上,普通患者的腰椎退变通常起始于纤维环后侧,而腰椎滑脱患者则因力学机制的失常,退变起始于腰椎小关节。 2.1.2 骨折 椎体压缩性骨折是腰椎椎体骨折的常见骨折形式,其会造成椎体高度丢失。众所周知,恢复椎体高度在治疗腰椎压缩性骨折时至关重要,然而支持这一观点的相关力学研究较为匮乏。最近发表的一项有限元研究弥补了这方面的空白,JHONG等[13]通过建立L3椎体压缩骨折的有限元模型分析发现,在相同压力下,椎体高度丢失模型会造成骨折椎体上方椎间盘的峰值应力增加154%,因此恢复椎体高度对于预防相邻节段退变十分重要。骨质疏松是导致椎体压缩性骨折的常见因素,现在通常使用骨密度测量来预测和评估骨质疏松性骨折。然而,有近一半骨质疏松性骨折患者受伤前在双能X射线骨密度仪的筛查下骨密度显示正常,这促使人们探寻一种预测和评估腰椎椎体骨折的新方法[14-15]。有限元分析能够估测整个椎体的压缩强度,并且有研究证实,基于计算机断层扫描构建的有限元模型测量出的椎体压缩强度在预测椎体骨折方面较骨密度更具优势[16]。可见,由有限元模型测量出的椎体压缩强度可能代替骨密度成为未来应用于老年人骨折风险预测的有效工具[16]。 综上所述,恢复压缩椎体的椎体高度能够预防相邻节段发生退变,且有限元分析测量出的椎体压缩强度能够代替骨密度成为预测骨折风险的有效工具。 2.2 有限元法在腰椎手术中的应用 2.2.1 腰椎融合术 腰椎融合术是治疗腰椎间盘突出症、腰椎椎管狭窄症、腰椎滑脱的常用术式,有研究显示,接受腰椎融合手术的患者人数逐年增加[17]。然而,患者接受腰椎融合术后,手术节段椎间盘的摘除与活动度消失导致腰椎应力重新分布,进而造成术后相关并发症的发生。有限元分析能够模拟接受腰椎融合术患者术前与术后腰椎力学结构的变化,从而起到优化手术操作、降低术后相关并发症发生率的效果。 邻近节段退行性病变是腰椎融合术后常见的并发症之一,有调查显示,39%-86%的融合患者可能会发展为邻近节段退行性病变[18-19]。邻近节段退行性病变的出现可能会导致部分患者需要再次接受手术治疗[20],因此明确腰椎融合术后邻近节段退行性病变的发病机制对患者的预后至关重要。通常认为,邻近节段退行性病变的出现归咎于节段生物力学改变[21-22]。ZHOU等[23]通过体内荧光成像与有限元模型相结合的方式分析发现,腰椎融合术后相邻节段的椎间应变、环向应力和椎间压力升高,这可能是导致邻近节段退行性病变发生的机制。除邻近节段退行性病变外,融合器下沉是腰椎融合术另一常见并发症。据报道,腰椎融合术后融合器下沉发生率为8.6%-38.1%[24-26]。骨骼质量是影响融合器下沉的重要因素,YANG等[27]通过建立有限元模型模拟骨质疏松患者的融合术后腰椎力学变化,发现低骨密度患者在手术节段应力更为集中,并且弯腰、旋转时融合器的应力增加更为明显,这可能是造成融合器下沉的重要原因之一。此外,融合器自身高度与放置位置也至关重要。通过构建有限元模型模拟发现,高度较高的融合器虽然能够更好地恢复椎间高度,但是此时融合器承载的应力更为集中,且与横向放置相比,将融合器呈斜角放置时,融合器承载的应力增加43%,这种应力增加可能是造成融合器下沉的原因[28]。因此,推荐选择高度适中的融合器并横向放置,这能够降低术后融合器下沉的概率。 近年来,Coflex与X-STOP等动态固定装置的出现给腰椎间盘减压后固定提供了新选择。GUO等[29]对Coflex与X-STOP等装置进行有限元分析发现,2种装置均能有效降低腰椎后伸时手术节段的椎间压力,且对邻近节段的影响不显著。有研究通过有限元分析证实,在相同活动度下,使用Coflex固定时腰部承受的载荷比传统固定更低,能够有效降低相邻节段发生退变的概率[30-31]。然而该术式也具有术后并发症发生率较高、手术时间较长等缺陷,但这多与术前适应证未严格把控及术中难以精细操作有关[32]。随着人工智能及手术机器人等领域的进步,相信这一技术的弊端终将被攻克。 综上所述,腰椎融合术中应选择高度适中的融合器并将其横向放置,能够避免融合器下沉,融合术后相邻节段的椎间应变、环向应力和椎间压力升高可能是导致邻近节段退行性病变发生的机制。 2.2.2 椎间孔镜 近年来,椎间孔镜已广泛应用于治疗腰椎退行性病 变[33]。与开放手术相比,椎间孔镜具有创伤小、恢复快、住院时间短、经济花费较低、并发症少且术后腰椎相对稳定等优势[34-37]。椎间孔成形术是椎间孔镜术中的关键步骤,也是手术成功的前提。不同的椎间孔成形方式会导致腰椎产生不同的应力改变,通过分别建立经由上关节突与下关节突进行椎间孔成形的有限元模型并进行对比发现,术中切除下关节突成型椎间孔的患者,术后在进行后伸和旋转运动时手术节段的椎间盘应力增加明显,这可能造成该节段的再突出,进而影响长期疗效[38-39]。除椎间孔成型方式外,关节突切除的大小也同样重要。有多个有限元分析的相关研究表明,关节突的过度破坏会导致腰椎失稳,因此在术前构建有限元模型,设计截骨大小至关重要[40-42]。有限元分析在椎间孔镜手术的围术期也得到了广泛应用,通过建立患者术前有限元模型可优化术中操作方式,减少手术时间。椎间孔镜手术后的常规影像学检查通常无法直观显示减压效果,而通过建立术后有限元模型与术前模型进行对比,可将神经根所受压力改变量化,能够精确描述手术减压情况[43]。 总之,有限元分析结果显示,椎间孔镜术前应规划截骨大小,避免过度破坏关节突,术中优先选择经由上关节突行椎间孔成形术。 2.2.3 经皮椎体后凸成形术 经皮椎体后凸成形术(percutaneous kyphoplasty,PKP)是治疗骨质疏松性椎体压缩性骨折的常用术式。有限元分析在PKP中得到了广泛应用,其能够分析患者的骨折特点,并制定最佳的手术方案[2]。骨水泥的注入量与注入后的形态均会影响患者预后,ZHANG等[44]通过构建L2椎体压缩性骨折PKP后的有限元模型,模拟相同载荷下不同方向的椎体运动并进行力学分析发现,在保持手术椎体稳定的情况下,注入4 mL骨水泥的模型较注入2 mL的模型相邻节段应力降低约15%,这种应力降低能够避免邻近椎体再骨折的发生。骨水泥注入后的分布形式通常分为4种,即前部分离、中部分离、不均匀分离、中部融合,有相关有限元研究证实,不均匀分离会导致骨水泥应力显著增加,而骨水泥分布于骨折椎体两侧时能明显减小相邻椎体应力,降低椎体再骨折的风险[45-46]。除骨水泥的注入量与分布外,骨水泥种类的选择也是研究者们关注的重点,有多个研究证实,同种术式下选择不同材质骨水泥的患者预后不同[47-48]。目前PKP术中多使用聚甲基丙烯酸甲酯作为骨水泥填充压缩椎体,然而该材质仍具有一定缺陷,如弹性模量为松质骨的30倍,这可能会造成填充后腰椎失稳[49]。无铝玻璃聚链烯酸酯作为一种新型的骨水泥材料广受推崇,创建以该材质作为骨水泥填充后的椎体有限元模型并分析发现,与聚甲基丙烯酸甲酯相比,无铝玻璃聚链烯酸酯在松质骨中产生的刚度与应力较低,具有更好的生物相容性。可见无铝玻璃聚链烯酸酯是可能替代聚甲基丙烯酸甲酯治疗椎体压缩性骨折的新材料,值得进一步推广[50-51]。 总之,PKP术中应选择双侧椎弓根注入骨水泥,使之分布于椎弓根两侧;并且相比于聚甲基丙烯酸甲酯,使用无铝玻璃聚链烯酸酯可以取得更好的治疗效果。 2.3 保守治疗 2.3.1 牵引 腰椎牵引是治疗腰椎退行性病变的常用保守疗法,它能够通过拉宽椎间距,降低椎间盘和神经的压力进而达到缓解疼痛与神经症状的效果[52-53]。但是腰椎牵引仍存在一定弊端,在牵引过程中,纤维环处于张应力状态,存在环状撕裂或沿当前撕裂延伸的风险,因此如何制定安全有效的牵引方案至关重要[54]。牵引角度与牵引力是影响患者牵引效果的两个重要因素,先前有研究证实,当牵引角度超过25°时,椎间盘受到压力作用,对治疗效果产生负面影响[55]。但是FARAJPOUR等[56]通过构建有限元模型并模拟牵引进行力学分析,结果显示牵引角度与牵引力的选择呈现个性化趋势,不同患者在相同的牵引角度与力度下腰部韧带与腰椎承受的力不同。因此,在治疗前应根据患者椎间盘丢失高度、身高、体质量等因素建立有限元模型制定最佳治疗方案。 综上,牵引治疗应根据患者自身情况设计个性化牵引角度、力度等,从而达到最佳疗效。 2.3.2 手法 手法治疗是中医学传统治疗手段,能够起到松解腰部肌肉、缓解疼痛的作用,在腰椎疾患的治疗中疗效突出。随着腰椎退变程度的增加,椎间盘的性质会发生变化致使腰椎更加僵直,从而影响应力的传导与分布[57-58]。通过构建不同退变程度的有限元模型,模拟推拿治疗后的疗效时发现,在相同力度的手法治疗下,疗效随退变程度加重而减弱[59]。斜扳法是治疗腰椎退行性病变的常用手法之一,由其发展而来的定点斜扳法更是广为应用。通过构建有限元模型对比2种手法疗效发现,定点斜扳法使患者L4-L5椎间盘左侧中央区和关节下区的平均位移及应力较传统斜扳法明显增高,治疗效果更加明显[59]。斜扳法的治疗效果与患者接受治疗时的体位也有明显关系,卢钰等[60]通过有限元法模拟前屈30°、水平0°和后伸10°三种不同体位的患者接受斜扳法治疗时的腰椎力学变化发现,患者在前屈30°的体位下接受斜扳法治疗,椎间盘与神经根之间位移明显增大,更有利于缓解神经根压迫产生的症状。DU等[61]设计了一种新的拔伸手法治疗腰椎间盘突出,并且通过有限元分析发现,在该手法的作用下,椎间盘突出区域后部的位移明显大于前部并且椎间盘突出区域的拉伸应力很小,而压缩应力非常显著;这表明该手法对椎间盘突出有显著的治疗效果,促进突出部分向正常位置移动。陈忻等[62]通过对退行性腰椎滑脱患者的有限元模型进行力学分析发现,坐位旋转手法能够使旋转方向对侧椎间盘向前上方位移,松解神经根粘连,进而缓解症状。 综上所述,手法治疗能够使腰椎椎间盘突出部分与神经根产生相对位移,从而减轻压迫程度。"
[1] 魏戌, 韩涛, 齐保玉, 等. 中西医结合治疗脊柱退行性疾病的思路与实践[J]. 中国骨伤,2023,36(4):345-347. [2] YAN J, LIAO Z, YU Y. Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture. Eur J Med Res. 2022;27(1):142. [3] NISHIDA N, OHGI J, JIANG F, et al. Finite Element Method Analysis of Compression Fractures on Whole-Spine Models Including the Rib Cage. Comput Math Methods Med. 2019;2019:8348631. [4] KONG M, XU D, GAO C, et al. Risk Factors for Recurrent L4-5 Disc Herniation After Percutaneous Endoscopic Transforaminal Discectomy: A Retrospective Analysis of 654 Cases. Risk Manag Healthc Policy. 2020;13:3051-3065. [5] BISWAS JK, RANA M, MALAS A, et al. Effect of single and multilevel artificial inter-vertebral disc replacement in lumbar spine: A finite element study. Int J Artif Organs. 2022;45(2):193-199. [6] SHARABI M, LEVI-SASSON A, WOLFSON R, et al. The Mechanical Role of the Radial Fibers Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study. J Biomech Eng . 2019;141(4). doi: 10.1115/1.4042685. [7] QASIM M, NATARAJAN RN, AN HS, et al. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study. J Biomech. 2012;45(11):1934-1940. [8] KANG S, PARK CH, JUNG H, et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study. Sci Rep. 2022;12(1):11001. [9] LIAO JC. Impact of Osteoporosis on Different Type of Short-Segment Posterior Instrumentation for Thoracolumbar Burst Fracture-A Finite Element Analysis. World Neurosurg. 2020;139:e643-e651. [10] NATARAJAN RN, GARRETSON RB, BIYANI A, et al. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Spine (Phila Pa 1976). 2003;28(11):1103-1112. [11] 刘洋, 赵永飞, 顾晓民, 等. 退变性腰椎滑脱力学模型建立及分析[J]. 脊柱外科杂志,2010,8(1):39-43. [12] 齐振熙, 马英锋. 退变性腰椎滑脱的三维FEA [J]. 中国骨伤,2004,17(12): 14-16. [13] JHONG GH, CHUNG YH, LI CT, et al. Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine. J Pers Med. 2022;12(2):253. [14] SCHUIT SCE, VAN DER KLIFT M, WEEL AEAM, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195-202. [15] COSMAN F, KREGE JH, LOOKER AC, et al. Spine fracture prevalence in a nationally representative sample of US women and men aged ≥40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Osteoporos Int. 2017;28(6):1857-1866. [16] IMAI K. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment. World J Exp Med. 2015;5(3): 182-187. [17] MARTIN BI, MIRZA SK, SPINA N, et al. Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015. Spine (Phila Pa 1976). 2019;44(5):369-376. [18] CHOI KC, KIM JS, SHIM HK, et al. Changes in the adjacent segment 10 years after anterior lumbar interbody fusion for low-grade isthmic spondylolisthesis. Clin Orthop Relat Res. 2014;472(6):1845-1854. [19] NAKASHIMA H, KAWAKAMI N, TSUJI T, et al. Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: Based on Cases With a Minimum of 10 Years of Follow-up. Spine (Phila Pa 1976). 2015;40(14):E831-E841. [20] WANG B, KE W, HUA W, et al. Biomechanical evaluation of anterior and posterior lumbar surgical approaches on the adjacent segment: a finite element analysis. Comput Methods Biomech Biomed Engin. 2020;23(14): 1109-1116. [21] MANNION AF, LEIVSETH G, BROX JI, et al. ISSLS Prize winner: Long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine (Phila Pa 1976). 2014;39(17):1373-1383. [22] PARK P, GARTON HJ, GALA VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004; 29(17):1938-1944. [23] ZHOU C, CHA T, WANG W, et al. Investigation of Alterations in the Lumbar Disc Biomechanics at the Adjacent Segments After Spinal Fusion Using a Combined In Vivo and In Silico Approach. Ann Biomed Eng. 2021;49(2): 601-616. [24] LE TV, BAAJ AA, DAKWAR E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976). 2012;37(14):1268-1273. [25] LEE N, KIM K N, YI S, et al. Comparison of Outcomes of Anterior, Posterior, and Transforaminal Lumbar Interbody Fusion Surgery at a Single Lumbar Level with Degenerative Spinal Disease. World Neurosurg. 2017;101:216-226. [26] MALHAM GM, PARKER RM, BLECHER CM, et al. Assessment and classification of subsidence after lateral interbody fusion using serial computed tomography. J Neurosurg Spine. 2015;23(5) 589-597. [27] YANG ZQ, CAI P, LI JC, et al. Stepwise reduction of bone mineral density increases the risk of cage subsidence in oblique lumbar interbody fusion patients biomechanically: an in-silico study. BMC Musculoskelet Disord. 2022;23(1):1083. [28] RASTEGAR S, ARNOUX PJ, WANG X, et al. Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion. Comput Methods Biomech Biomed Engin. 2020;23(9):456-466. [29] GUO Z, LIU G, WANG L, et al. Biomechanical effect of Coflex and X-STOP spacers on the lumbar spine: a finite element analysis. Am J Transl Res. 2022;14(7):5155-5163. [30] ZHU J, SHEN H, CUI Y, et al. Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion with Coflex-F and Pedicle Screw Fixation: Finite Element Analysis of Static and Vibration Conditions. Orthop Surg. 2022;14(9):2339-2349. [31] FAN Y, ZHOU S, XIE T, et al. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis. J Orthop Surg Res. 2019;14(1):476. [32] ZHONG J, O’CONNELL B, BALOUCH E, et al. Patient Outcomes After Single-level Coflex Interspinous Implants Versus Single-level Laminectomy. Spine (Phila Pa 1976). 2021;46(13):893-900. [33] KAPETANAKIS S, GKASDARIS G, ANGOULES AG, et al. Transforaminal Percutaneous Endoscopic Discectomy using Transforaminal Endoscopic Spine System technique: Pitfalls that a beginner should avoid. World J Orthop. 2017;8(12):874-880. [34] WEINSTEIN JN, TOSTESON TD, LURIE JD, et al. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med. 2008;358(8):794-810. [35] JASPER GP, FRANCISCO GM, TELFEIAN AE. Transforaminal endoscopic discectomy with foraminoplasty for the treatment of spondylolisthesis. Pain Physician. 2014;17(6):E703-E708. [36] JASPER GP, FRANCISCO GM, AGHION D, et al. Technical considerations in transforaminal endoscopic discectomy with foraminoplasty for the treatment of spondylolisthesis: Case report. Clin Neurol Neurosurg. 2014; 119:84-87. [37] KITAHAMA Y, SAIRYO K, DEZAWA A. Percutaneous endoscopic transforaminal approach to decompress the lateral recess in an elderly patient with spinal canal stenosis, herniated nucleus pulposus and pulmonary comorbidities. Asian J Endosc Surg. 2013;6(2):130-133. [38] XIE Y, ZHOU Q, WANG X, et al. The biomechanical effects of foraminoplasty of different areas under lumbar percutaneous endoscopy on intervertebral discs: A 3D finite element analysis. Medicine (Baltimore). 2020;99(17): e19847. [39] YU Y, ZHOU Q, XIE YZ, et al. Effect of Percutaneous Endoscopic Lumbar Foraminoplasty of Different Facet Joint Portions on Lumbar Biomechanics: A Finite Element Analysis. Orthop Surg. 2020;12(4):1277-1284. [40] LI J, ZHANG X, XU W, et al. Reducing the extent of facetectomy may decrease morbidity in failed back surgery syndrome. BMC Musculoskelet Disord. 2019;20(1):369. [41] SHI Y, XIE YZ, ZHOU Q, et al. The biomechanical effect of the relevant segments after facet-disectomy in different diameters under posterior lumbar percutaneous endoscopes: a three-dimensional finite element analysis. J Orthop Surg Res. 2021;16(1):593. [42] LI J, XU W, JIANG Q, et al. Indications Selection for Surgeons Training in the Translaminar Percutaneous Endoscopic Discectomy Based on Finite Element Analysis. Biomed Res Int. 2020;2020:2960642. [43] KITAHAMA Y, OHASHI H, NAMBA H, et al. Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery. Asian J Endosc Surg. 2021;14(3):628-635. [44] ZHANG X, CHEN T, MENG F, et al. A finite element analysis on different bone cement forms and injection volumes injected into lumbar vertebral body in percutaneous kyphoplasty. BMC Musculoskelet Disord. 2022;23(1):621. [45] 吴智华, 李任, 潘慧玲, 等. 骨水泥弥散类型对强化椎体生物力学特性影响的FEA [J]. 中国组织工程研究,2023,27(30):4763-4768. [46] 赵研, 宋启春, 李东, 等. 骨质疏松性椎体压缩骨折不同骨水泥分布的临床观察及生物力学的FEA [J]. 创伤外科杂志,2022,24(11):818-824+ 836. [47] KOU YH, ZHANG DY, ZHANG JD, et al. Vertebroplasty with high-viscosity cement versus conventional kyphoplasty for osteoporotic vertebral compression fractures: a meta-analysis. ANZ J Surg. 2022;92(11):2849-2858. [48] WANG Q, SUN C, ZHANG L, et al. High- versus low-viscosity cement vertebroplasty and kyphoplasty for osteoporotic vertebral compression fracture: a meta-analysis. Eur Spine J. 2022;31(5):1122-1130. [49] DICKEY BT, TYNDYK MA, DOMAN DA, et al. In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements. J Mech Behav Biomed Mater. 2012;5(1):283-290. [50] MEYER C, VAN GAALEN K, LESCHINGER T, et al. Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement. Biomed Res Int. 2019;2019:9232813. [51] ZHU J, YANG S, CAI K, et al. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics. 2020;10(14):6544-6560. [52] DIAB AA, MOUSTAFA IM. Lumbar lordosis rehabilitation for pain and lumbar segmental motion in chronic mechanical low back pain: a randomized trial. J Manipulative Physiol Ther. 2012;35(4):246-253. [53] GAGNE AR, HASSON SM. Lumbar extension exercises in conjunction with mechanical traction for the management of a patient with a lumbar herniated disc. Physiother Theory Pract. 2010;26(4):256-266. [54] ÖTEN E, CIVAN O, UĞUR L. Traction therapy in lumbar disc hernias: A finite element analysis study. Jt Dis Relat Surg. 2022;33(1):86-92. [55] 林俊山, 李兆文, 林石明, 等. 不同角度和牵引力对腰椎间盘作用的实验研究[J]. 福建中医学院学报,2002,12(1):21-25. [56] FARAJPOUR H, JAMSHIDI N. Effects of Different Angles of the Traction Table on Lumbar Spine Ligaments: A Finite Element Study. Clin Orthop Surg. 2017;9(4):480-488. [57] TANG S, REBHOLZ BJ. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study. J Orthop Sci. 2011;16(2):221-228. [58] TANG S, REBHOLZ BJ. Does lumbar microdiscectomy affect adjacent segmental disc degeneration? A finite element study. J Surg Res. 2013; 182(1): 62-67. [59] ZHANG R, MO Z, LI D, et al. Biomechanical Comparison of Lumbar Fixed-Point Oblique Pulling Manipulation and Traditional Oblique Pulling Manipulation in Treating Lumbar Intervertebral Disk Protrusion. J Manipulative Physiol Ther. 2020;43(5):446-456. [60] 卢钰, 郑太才, 王琪, 等. 不同体位下斜扳手法治疗腰椎间盘突出的三维FEA [J]. 中国组织工程研究,2021,25(36):5872-5877. [61] DU HG, LIAO SH, JIANG Z, et al. Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint. Saudi Pharm J. 2016;24(3):305-311. [62] 陈忻, 于杰, 冯敏山, 等. 坐位旋转手法治疗退行性腰椎滑脱的椎间盘力学分析[J]. 中华中医药杂志,2019,34(4):1395-400. [63] JIN M, LEI L, LI F, et al. Does Robot Navigation and Intraoperative Computed Tomography Guidance Help with Percutaneous Endoscopic Lumbar Discectomy? A Match-Paired Study. World Neurosurg. 2021;147:e459-e467. [64] WANG B, CAO J, CHANG J, et al. Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res. 2021;16(1):65. [65] GOOD CR, OROSZ L, SCHROERLUCKE SR, et al. Complications and Revision Rates in Minimally Invasive Robotic-Guided Versus Fluoroscopic-Guided Spinal Fusions: The MIS ReFRESH Prospective Comparative Study. Spine (Phila Pa 1976). 2021;46(23):1661-1668. [66] LI Y, WANG Y, MA X, et al. Comparison of short-term clinical outcomes between robot-assisted and freehand pedicle screw placement in spine surgery: a meta-analysis and systematic review. J Orthop Surg Res. 2023; 18(1):359. [67] CHANG M, WANG L, YUAN S, et al. Percutaneous Endoscopic Robot-Assisted Transforaminal Lumbar Interbody Fusion (PE RA-TLIF) for Lumbar Spondylolisthesis: A Technical Note and Two Years Clinical Results. Pain Physician. 2022;25(1): E73-E86. [68] ZHANG RJ, ZHOU LP, ZHANG L, et al. Safety and risk factors of TINAVI robot-assisted percutaneous pedicle screw placement in spinal surgery. J Orthop Surg Res. 2022;17(1):379. [69] HAN XG, TANG GQ, HAN X, et al. Comparison of Outcomes between Robot-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion in Single-Level Lumbar Spondylolisthesis. Orthop Surg. 2021;13(7):2093-2101. [70] SHI B, JIANG T, DU H, et al. Application of Spinal Robotic Navigation Technology to Minimally Invasive Percutaneous Treatment of Spinal Fractures: A Clinical, Non-Randomized, Controlled Study. Orthop Surg. 2021;13(4):1236-1243. [71] HARREN K, DITTRICH F, REINECKE F, et al. [Digitalization and artificial intelligence in orthopedics and traumatology]. Orthopade. 2018;47(12): 1039-1054. [72] XIE LZ, WANG QL, ZHANG Q, et al. Accuracies of various types of spinal robot in robot-assisted pedicle screw insertion: a Bayesian network meta-analysis. J Orthop Surg Res. 2023;18(1):243. [73] MOURAD R, KOLISNYK S, BAIUN Y, et al. Performance of hybrid artificial intelligence in determining candidacy for lumbar stenosis surgery. Eur Spine J. 2022;31(8):2149-2155. |
[1] | Sun Xiaojun, Wang Huaming, Zhang Dehong, Song Xuewen, Huang Jin, Zhang Chen, Pei Shengtai. Effect of finite element method in treatment of developmental dysplasia of the hip in children [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1897-1904. |
[2] | Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang. Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1913-1922. |
[3] | Li Liangkui, Huang Yongcan, Wang Peng, Yu Binsheng. Effect of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1761-1767. |
[4] | Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao. Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1768-1774. |
[5] | Zhou Jinhai, Li Jiangwei, Wang Xuquan, Zhuang Ying, Zhao Ying, Yang Yuyong, Wang Jiajia, Yang Yang, Zhou Shilian. Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1775-1782. |
[6] | Chen Xi, Tang Tao, Chen Tongbing, Li Qing, Zhang Wen. Mechanical stability of intertrochanteric fracture of femur with different internal fixation systems [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1783-1788. |
[7] | Fu Enhong, Yang Hang, Liang Cheng, Zhang Xiaogang, Zhang Yali, Jin Zhongmin. OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1789-1795. |
[8] | Yu Jingbang, Wu Yayun. Regulatory effect of non-coding RNA in pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1659-1666. |
[9] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[10] | Yuan Weibo, Liu Chan, Yu Limei. Potential application of liver organoids in liver disease models and transplantation therapy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1684-1692. |
[11] | Cao Yue, Ye Xinjian, Li Biyao, Zhang Yining, Feng Jianying. Effect of extracellular vesicles for diagnosis and therapy of oral squamous cell carcinoma [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1523-1530. |
[12] | Peng Hongcheng, Peng Guoxuan, Lei Anyi, Lin Yuan, Sun Hong, Ning Xu, Shang Xianwen, Deng Jin, Huang Mingzhi . Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1497-1503. |
[13] | Lu Jieming, Li Yajing, Du Peijie, Xu Dongqing. Effects of artificial turf versus natural grass on biomechanical performance of the lower limbs in young females during jump-landing [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1101-1107. |
[14] | Zhang Debao, Wang Peng, Li Kun, Zhang Shaojie, Li Zhijun, Li Shuwen, Wu Yimin. Epidural fibrous scar formation in rabbits following autologous ligamentum flavum intervention [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1168-1175. |
[15] | He Bo, Chen Wen, Ma Suilu, He Zhijun, Song Yuan, Li Jinpeng, Liu Tao, Wei Xiaotao, Wang Weiwei, Xie Jing . Pathogenesis and treatment progress of flap ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1230-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||