Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (4): 864-872.doi: 10.12307/2025.987
Previous Articles Next Articles
Yang Jing1, Wang Houmei2, Wang Yi1, Song Min1, Ren Jie2, Dai Lujun3, Xiao Ziwen2
Received:
2024-11-04
Accepted:
2024-12-23
Online:
2026-02-08
Published:
2025-05-16
Contact:
Xiao Ziwen, PhD, Chief physician, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Co-corresponding author: Wang Houmei, PhD, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
About author:
Yang Jing, Master candidate, Graduate School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:
CLC Number:
Yang Jing, Wang Houmei, Wang Yi, Song Min, Ren Jie, Dai Lujun, Xiao Ziwen. Constructing a rat animal model of pelvic organ prolapse: a comparison of three modeling methods[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 864-872.
2.1 实验动物数量分析 实验选用大鼠72只,分为4组,实验过程中均无死亡,全部进入结果分析。 2.2 大鼠阴道上皮层厚度和盆底肌肌纤维的变化 通过苏木精-伊红染色发现,假手术组和阴道球囊扩张组的阴道上皮层未见明显萎缩,盆底肌的肌纤维排列有序,连接紧密;卵巢切除组及联合组上皮层较假手术组均发生明显萎缩,盆底肌的肌纤维变稀疏紊乱,见图3。术后4,8,12周,与假手术组比较,阴道球囊扩张组大鼠阴道上皮层厚度下降差异均无显著性意义(P > 0.05),而卵巢切除组和联合组阴道上皮层厚度均显著下降(P < 0.001),其中联合组下降的更明显,并随时间的延长厚度变薄,术后8周阴道壁上皮厚度趋于稳定,见表1。以上结果说明联合法比卵巢切除法造成阴道上皮层厚度下降的更快,且在术后8周时上皮层厚度下降已达稳定状态并持续到12周。"
2.3 大鼠阴道壁及盆底肌组织中胶原纤维和弹性纤维的变化 2.3.1 胶原纤维组织的变化 见图4。Masson染色发现,假手术组和阴道球囊扩张组中阴道壁胶原纤维呈网状结构、纤维之间连接紧密,卵巢切除组和联合组中阴道壁胶原纤维疏松、胶原纤维间有明显的分离;各处理组中盆底肌组织中胶原纤维变化不明显,见图4A和F。术后4,8,12周,阴道球囊扩张组的阴道壁组织胶原纤维含量与假手术组相比,差异均无显著性意义(P > 0.05),而卵巢切除组和联合组胶原纤维含量均较假手术组显著下降(P < 0.01),其中联合组下降更明显,并随着时间的延长含量下降,且在术后8周时含量下降已达稳定状态并可持续到12周,见图4B-E。以上结果说明卵巢切除+阴道球囊扩张联合法能使盆腔器官脱垂大鼠模型的阴道壁组织中胶原纤维含量下降的更多,最短造模时间为8周。 2.3.2 弹性纤维组织的变化 见图5。EVG染色发现,假手术组和阴道球囊扩张组中阴道壁弹性纤维呈细长的丝状结构;卵巢切除组和联合组中弹性纤维稀疏;各处理组中盆底肌组织中弹性纤维变化不明显,见图5A,D。术后4,8,12周,阴道球囊扩张组的阴道壁组织弹性纤维含量与假手术组相比,差异均无显著性意义(P > 0.05),而卵巢切除组和联合组弹性纤维含量均较假手术组显著下降(P < 0.01),其中联合组下降更明显,并随着时间的延长含量下降,且在术后8周时含量下降已达稳定状态并可持续到12周,见图5B,C,E,F。以上结果说明卵巢切除+阴道球囊扩张联合法能更好地造成阴道壁组织中弹性纤维含量下降。因各处理组对盆底肌组织的形态学变化均不明显,推测各造模方法对盆底肌组织不能形成盆腔器官脱垂的组织学改变,故不对盆底肌组织行免疫组织化学检测。 2.4 大鼠阴道壁平滑肌细胞及成纤维细胞的表达 见图6。 α-SMA(图6A)、Vimentin(图6F)免疫组织化学染色结果显示,术后4,8,12周,阴道球囊扩张组阴道壁组织中的平滑肌细胞及成纤维细胞的表达水平与假手术组相比,差异均无显著性意义(P > 0.05),而卵巢切除组和联合组平滑肌细胞及成纤维细胞的表达均较假手术组显著下降(P < 0.01),其中联合组下降更明显,并随着时间的延长表达降低,且在术后8周时含量下降已达稳定状态并可持续到12周,见图6B-E,G-J。以上结果说明联合法能更好地造成阴道壁组织中平滑肌细胞及成纤维细胞表达的下降。 2.5 大鼠阴道壁组织中基质金属蛋白酶9的表达 免疫组织化学染色结果显示(图7A),与假手术组比较,阴道球囊扩张组阴道壁组织术后4,8,12周基质金属蛋白酶9蛋白表达的增加差异均无显著性意义(P > 0.05),而卵巢切除组和联合组术后4,8,12周基质金属蛋白酶9蛋白表达均显著增加(P < 0.01),其中联合组增加更明显,并随时间的延长表达增加,见图7B-E。以上结果说明联合法比卵巢切除法更容易造成阴道壁组织外基质降解,且在术后8周达顶峰并可持续到12周。"
[1] HAYLEN BT, MAHER CF, BARBER MD, et al. An International Urogynecological Association (IUGA) / International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27(2):165-194. [2] WANG Y, WEN Y, KIM K, et al. Functional outcome of the anterior vaginal wall in a pelvic surgery injury rat model after treatment with stem cell-derived progenitors of smooth muscle cells. Stem Cell Res Ther. 2024;15(1):291. [3] BARBER MD, BRUBAKER L, BURGIO KL, et al. Comparison of 2 transvaginal surgical approaches and perioperative behavioral therapy for apical vaginal prolapse: the OPTIMAL randomized trial. JAMA. 2014;311(10):1023-1034. [4] QUAGHEBEUR J, PETROS P, WYNDAELE JJ, et al. Pelvic-floor function, dysfunction, and treatment. Eur J Obstet Gynecol Reprod Biol. 2021; 265:143-149. [5] WALLACE SL, MILLER LD, MISHRA K. Pelvic floor physical therapy in the treatment of pelvic floor dysfunction in women. Curr Opin Obstet Gynecol. 2019;31(6):485-493. [6] LIMBUTARA W, BUNYAVEJCHEVIN S, RUANPHOO P, et al. Patient-reported goal achievements after pelvic floor muscle training versus pessary in women with pelvic organ prolapse. A randomised controlled trial. J Obstet Gynaecol. 2023;43(1):2181061. [7] CALLEWAERT G, MONTEIRO CARVALHO MORI DA CUNHA MG, DEWULF K, et al. Simulated vaginal delivery causes transients vaginal smooth muscle hypersensitivity and urethral sphincter dysfunction. Neurourol Urodyn. 2020;39(3):898-906. [8] DOWNING KT, BILLAH M, RAPARIA E, et al. The role of mode of delivery on elastic fiber architecture and vaginal vault elasticity: a rodent model study. J Mech Behav Biomed Mater. 2014;29:190-198. [9] LONG CY, LIN KL, LOO ZX, et al. The effects of simulated childbirth trauma on the gene expression of neurotransmitter receptors in the bladder of female rats. J Formos Med Assoc. 2021;120(6):1305-1313. [10] GUO T, DU Z, WANG XQ, et al. Ovariectomy with simulated vaginal delivery to establish a rat model for pelvic organ prolapse. Connect Tissue Res. 2023;64(4):376-388. [11] LI Y, LI Z, LI Y, et al. Genetics of Female Pelvic Organ Prolapse: Up to Date. Biomolecules. 2024;14(9):1097. [12] MCCRACKEN JM, CALDERON GA, ROBINSON AJ, et al. Animal Models and Alternatives in Vaginal Research: a Comparative Review. Reprod Sci. 2021;28(6):1759-1773. [13] 严晓,覃彩芳,李青先,等.盆腔脏器脱垂动物模型的建立与适用性评价[J].中国实验动物学报,2020,28(5):668-674. [14] 袁佳坤,陈国庆,王琼,等.盆底器官脱垂动物模型构建研究进展[J].检验医学与临床,2023,20(18):2743-2747. [15] ALLEN-BRADY K, BORTOLINI M, DAMASER MS. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review. Int Urogynecol J. 2022;33(7):1765-1788. [16] BAI S, LU C, KONG Q, et al. Establishing a Rat Model of Pelvic Organ Prolapse with All Compartment Defects by Persistent Cervical Tension. Int Urogynecol J. 2024;35(3):615-625. [17] MORI DA CUNHA M, MACKOVA K, HYMPANOVA LH, et al. Animal models for pelvic organ prolapse: systematic review. Int Urogynecol J. 2021;32(6):1331-1344. [18] TYAGI T, ALARAB M, LEONG Y, et al. Local oestrogen therapy modulates extracellular matrix and immune response in the vaginal tissue of post-menopausal women with severe pelvic organ prolapse. J Cell Mol Med. 2019;23(4):2907-2919. [19] SHYNLOVA O, BORTOLINI MA, ALARAB M. Genes responsible for vaginal extracellular matrix metabolism are modulated by women’s reproductive cycle and menopause. Int Braz J Urol. 2013;39(2):257-267. [20] ALPERIN M, FEOLA A, MEYN L, et al. Collagen scaffold: a treatment for simulated maternal birth injury in the rat model. Am J Obstet Gynecol. 2010;202(6):589.e1-8. [21] ONOL FF, ERCAN F, TARCAN T. The effect of ovariectomy on rat vaginal tissue contractility and histomorphology. J Sex Med. 2006;3(2): 233-241. [22] DA SILVA DIAS BABINSKI M, PIRES L, LOPES EM, et al. Morphological changes in the anterior vaginal wall caused by aging: a scanning electron microscopy study. Int Urogynecol J. 2023;34(11):2737-2741. [23] BASHA ME, CHANG S, BURROWS LJ, et al. Effect of estrogen on molecular and functional characteristics of the rodent vaginal muscularis. J Sex Med. 2013;10(5):1219-1230. [24] ZONG W, MEYN LA, MOALLI PA. The amount and activity of active matrix metalloproteinase 13 is suppressed by estradiol and progesterone in human pelvic floor fibroblasts. Biol Reprod. 2009; 80(2):367-374. [25] MOALLI PA, DEBES KM, MEYN LA, et al. Hormones restore biomechanical properties of the vagina and supportive tissues after surgical menopause in young rats. Am J Obstet Gynecol. 2008;199(2): 161.e1-8. [26] HARE AM, GADDAM NG, SHI H, et al. Impact of vaginal distention on cell senescence in an animal model of pelvic organ prolapse. Tissue Cell. 2021;73:101652. [27] PATEL DA, XU X, THOMASON AD, et al. Childbirth and pelvic floor dysfunction: an epidemiologic approach to the assessment of prevention opportunities at delivery. Am J Obstet Gynecol. 2006; 195(1):23-28. [28] WEINTRAUB AY, GLINTER H, MARCUS-BRAUN N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse. Int Braz J Urol. 2020;46(1):5-14. [29] LI Y, LIU J, ZHANG Y, et al. A comprehensive evaluation of spontaneous pelvic organ prolapse in rhesus macaques as an ideal model for the study of human pelvic organ prolapse. Sci Bull (Beijing). 2023;68(20): 2434-2447. [30] KATO MK, MURO S, KATO T, et al. Spatial distribution of smooth muscle tissue in the female pelvic floor and surrounding the urethra and vagina. Anat Sci Int. 2020;95(4):516-522. [31] MOCAN-HOGNOGI RF, COSTIN N, MALUTAN A, et al. Histological changes in the vulva and vagina from ovariectomised rats undergoing oestrogen treatment. Folia Morphol (Warsz). 2016;75(4):467-473. [32] BERMAN JR, MCCARTHY MM, KYPRIANOU N. Effect of estrogen withdrawal on nitric oxide synthase expression and apoptosis in the rat vagina. Urology. 1998;51(4):650-656. [33] JUNDT K, KIENING M, FISCHER P, et al. Is the histomorphological concept of the female pelvic floor and its changes due to age and vaginal delivery correct? Neurourol Urodyn. 2005;24(1):44-50. [34] HUANG G, HE Y, HONG L, et al. Restoration of NAD(+) homeostasis protects C2C12 myoblasts and mouse levator ani muscle from mechanical stress-induced damage. Anim Cells Syst (Seoul). 2022; 26(4):192-202. [35] DELANCEY JO, MASTROVITO S, MASTELING M, et al. A unified pelvic floor conceptual model for studying morphological changes with prolapse, age, and parity. Am J Obstet Gynecol .2024;230(5):476-484.e2. [36] HU Y, WU R, LI H, et al. Expression and Significance of Metalloproteinase and Collagen in Vaginal Wall Tissues of Patients with Pelvic Organ Prolapse. Ann Clin Lab Sci. 2017;47(6):698-705. [37] CAO LL, YU J, YANG ZL, et al. MMP-1/TIMP-1 expressions in rectal submucosa of females with obstructed defecation syndrome associated with internal rectal prolapse. Histol Histopathol. 2019;34(3):265-274. [38] LIEDL B, DODI G, INOUE H, et al. Structural, functional, and dysfunctional pelvic anatomy. Ann Transl Med. 2024;12(2):23. [39] ZONG W, JIANG Y, ZHAO J, et al. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells. J Zhejiang Univ Sci B. 2015;16(10):857-864. [40] LIN SY, TEE YT, NG SC, et al. Changes in the extracellular matrix in the anterior vagina of women with or without prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(1):43-48. [41] ZENG C, LIU J, WANG H, et al. Correlation Between Autophagy and Collagen Deposition in Patients With Pelvic Organ Prolapse. Female Pelvic Med Reconstr Surg. 2018;24(3):213-221. [42] SAPUTRA A, RIZAL DM, AYUANDARI S, et al. The difference in collagen type-1 expression in women with and without pelvic organ prolapse: a systematic review and meta-analysis. Int Urogynecol J. 2022;33(7): 1803-1812. |
[1] | Lai Pengyu, Liang Ran, Shen Shan. Tissue engineering technology for repairing temporomandibular joint: problems and challenges [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(在线): 1-9. |
[2] | Su Xiaoyang, Chen Wenting, Fu Yidan, Zhao Yan, Lan Danfeng, Yang Qiuping. Correlation between Mer receptor tyrosine kinase and diabetic peripheral neuropathy in Sprague-Dawley rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1593-1599. |
[3] | Han Haihui, Meng Xiaohu, Xu Bo, Ran Le, Shi Qi, Xiao Lianbo. Effect of fibroblast growth factor receptor 1 inhibitor on bone destruction in rats with collagen-induced arthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 968-977. |
[4] | Chen Lijuan, Gao Xinxue, Wu Jin, Du Ying, Lyu Meijun, Sui Guoyuan, Jia Lianqun, Pan Guowei. Construction and evaluation of spleen-deficiency hyperlipidemia mouse models [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(29): 6237-6242. |
[5] | Li Shuyuan, Yang Dawen, Zeng Zhanpeng, Cai Qunbin, Zhang Jingtao, Zhou Qishi. Application of induced membrane technique for repairing critical-sized bone defects: advantages and future development [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(28): 6083-6093. |
[6] | Lai Pengyu, Liang Ran, Shen Shan. Tissue engineering technology for repairing temporomandibular joint: problems and challenges [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(22): 4804-4812. |
[7] | Wu Xiuli, Yan Xiaoxia, Ren Zhiqiang, Sun Nan, Li Jinju. Modeling methods and evaluation criteria in animal models of steroid-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4560-4567. |
[8] | Tao Zihan, Saijilafu. Cycloastragenol promotes motor function recovery and cortical neuron regeneration in mice with spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(20): 4258-4265. |
[9] | Liang Roujun, Zhan Lifen, Zeng Xuejiu, Ding Qiangsheng, Luo Xiaojing, Zhuo Yue, Ai Kun, Deng Shifeng, Xu Ming, Zhang Hong. Effect of the number of times to urinate on the modeling rate of neurogenic bladder model in rats after complete spinal cord transection [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(18): 3840-3847. |
[10] | Qian Jiaming, Wang Xiaole, Fang Ting, Zhou Maosheng, Liu Fushui, . Animal model of cervical spondylosis and its internal molecular mechanism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3624-3631. |
[11] | Qian Zuping, Chen Yong, Ran Yan, Da Jingjing, Zha Yan. Diabetic nephropathy model: animal model, two-dimensional cell simulation and three-dimensional organoid model [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3632-3640. |
[12] | He Li, , Ren Lu, , Jiang Xiaoxi, , Liu Xuqian, , Li Chunhui, . Effects of 1,8-cineole on inflammatory response in a rat model of experimental periodontitis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3605-3613. |
[13] | Zhang Xiaoyun, Li Kunjian, Mo Jian, Chai Yuan, Huang Yourong . Current status and trends of research on animal models of postmenopausal osteoporosis: a bibliometric visualization analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 3070-3080. |
[14] | Yin Hao, Ji Meiqi, Hu Zhixiang, Wu Han, Lyu Heng, Li Shengyun, Li Lei, Zhai Chuntao, Lyu Yue. Comparison and evaluation of three different methods for preparing rat models of lumbar disc herniation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 2930-2936. |
[15] | Tian Dongzi, Shen Weiwei, Li Wenshuai, Shi Jie, Deng Xiaowen, Zhao Zhengrong, Liu Dengke, Liu Taotao, Cai Maolin, Gao Qiuming. Construction and evaluation of a model of chronic osteomyelitis in sheep tibia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 2937-2942. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||