Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (36): 7880-7888.doi: 10.12307/2025.765
Previous Articles Next Articles
Ran Yaqin1, 2, Chen Xi2, Xie Yanne2, Yuan Jun1, 2
Received:
2024-09-21
Accepted:
2024-11-02
Online:
2025-12-28
Published:
2025-03-25
Contact:
Yuan Jun, MD, Chief technician, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Laboratory Medicine, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou Province, China
About author:
Ran Yaqin, Master candidate, Resident physician, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Laboratory Medicine, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou Province, China
Supported by:
2.1 细胞焦亡的定义发展历程 1986年,FRIEDLANDER[14]研究发现炭疽致死毒素可导致小鼠巨噬细胞快速裂解死亡并发生炎性反应。1992年,ZYCHLINSKY等[15]研究发现志贺氏菌和沙门氏菌感染巨噬细胞的细胞毒性新机制,其可诱导宿主细胞死亡,鉴于当时研究的局限,业内将此种细胞死亡形式归入细胞凋亡。此细胞死亡过程特异性依赖caspase-1介导,进而释放白细胞介素1β,引起炎性反应,有异于既往的细胞凋亡概念[16]。直到2001年,COOKSON和BRENNAN将这种新的程序性细胞死亡命名为“pyroptosis”,希腊语中“pyro”意指火与热,“ptosis”意指凋零[17]。2010年,研究者通过应用酶促N端富集技术和质谱分析蛋白质组学方法成功鉴定出Gasdermin(GSDM)D作为炎症性caspase-1的一个关键底物[18]。随着研究的深入,2012年,BROZ等[19]发现当宿主感染沙门氏菌时,非经典的caspase-11可在不依赖caspase-1的情况下诱导细胞焦亡。2015年,GSDMD被证明是焦亡信号转导途径中的关键蛋白,其可被caspase-1/4/5/11切割,导致GSDMD N端释放并转移到细胞膜上形成孔洞,进而启动细胞焦亡[20-21]。2017年,WANG等[22]发现GSDME在细胞焦亡过程中的新功能,其可将由肿瘤坏死因子或化疗药物触发的caspase-3介导的细胞凋亡信号转化为细胞焦亡信号。2018年,细胞死亡命名委员会(Nomenclature Committeeon Cell Death,NCCD)正式将由GSDM家族蛋白介导的质膜膜孔形成的可控性细胞死亡命名为“细胞焦亡”[23]。2019年,有研究报道caspase-8在细胞焦亡过程中的关键作用,其对炎症小体的激活和功能产生调节作用[24]。最新研究揭示,颗粒酶A、颗粒酶B等颗粒酶可通过特异性裂解GSDMB与GSDME直接引发细胞焦亡[25-26]。截至目前,业内对细胞焦亡的认知和定义仍在不断发展,见图3。 "
2.2 细胞焦亡的定义及特征 细胞焦亡是由GSDM家族蛋白介导的一种独特程序性细胞死亡形式[27],由病原微生物感染或其他危险信号引发,该过程伴随炎症反应。细胞焦亡的形态特征主要以细胞肿胀、质膜破裂、染色质凝聚、DNA片段化、膜孔形成、渗透裂解、炎性细胞内容物释放为主,同时细胞核保持完整[28],主要效应分子是炎症小体、GSDM蛋白家族、caspase-1/3/4/5/8/11[29]。GSDM的裂解和激活是驱动细胞焦亡的关键效应分子[30]。GSDM蛋白家族由6个成员组成,其中5个成员在通过孔形成和焦亡诱导细胞死亡方面发挥着不同的作用,分别是GSDMA、GSDMB、GSDMC、GSDMD和GSDME;另一个成员Pejvakin,也称为DFNB59(GSDMF),与常染色体隐性遗传性耳聋有关,与其他GSDM的序列相似性较低[31]。除GSDMF外,其余GSDM蛋白具有相似的结构,如N端成孔结构域、C端调节结构域等。GSDMA-E的N端结构域能穿透脂质双层并形成孔隙,而GSDMF不再具有这种成孔能力,但其依然保持刺激炎症的反应能力[32-34]。 2.3 细胞焦亡的生物学机制 2.3.1 经典的炎症小体通路 在焦亡信号通路中,最先发现的是经典炎症小体通路,其启动于炎症小体的组装,该过程导致caspase-1的激活,进而催化GSDMD的裂解,最终释放白细胞介素1β和白细胞介素18并触发各种反应。自2002年发现以来,炎症小体作为胞质内的一种多聚体结构在哺乳动物先天免疫应答中发挥核心作用,它能迅速识别并响应病原体的入侵信号以及其他威胁性刺激,触发免疫反应[35]。炎症小体的激活由模式识别受体触发,该受体可识别外源性病原体和内源性损伤,包括细菌感染、病原体相关分子模式和损伤相关分子模式[36]。最常见的模式识别受体包括核苷酸结合寡聚化结构域样受体(nucleotide oligomerization domai-like receptors,NLRs)、黑色素瘤缺失蛋白2和PYRIN蛋白。特定刺激可激活不同的模式识别受体,例如:NLRP1可识别炭疽致死毒素[37],NLRP3可识别病原体相关分子模式和损伤相关分子模式[38],NLRC4对Ⅲ型分泌系统蛋白和鞭毛蛋白有反应[39],黑色素瘤缺失蛋白2识别细胞质双链DNA[40],PYRIN蛋白白感知细菌毒素介导的Rho鸟苷三磷酸酶失活[41]。通常,典型的炎症小体是一种大型多蛋白复合物,由活化的模式识别受体、细胞凋亡相关斑点样蛋白和pro-caspase-1组装而成。但是在某些情况下,NLRP1和NLRC4能够直接与pro-caspase-1相互作用,无需细胞凋亡相关斑点样蛋白接头[42-44]。在模式识别受体被激活后,pro-caspase-1可被具有CARD结构域的模式识别受体直接招募,或通过细胞凋亡相关斑点样蛋白间接招募,形成依赖于caspase-1的炎症小体。活化的caspase-1能够裂解非活性的白细胞介素1β和白细胞介素18前体,同时还能切割GSDMD,释放GSDMD N端,该片段可作用于细胞膜并形成孔隙,最终导致炎症反应和细胞焦亡[45]。因此,典型炎症小体途径触发的焦亡主要在免疫细胞内发生,充当机体抵御病原体侵袭的防御机制,具体信息见表1。"
2.3.2 非经典炎症小体通路 非经典炎症小体信号通路是机体天然免疫反应的重要组成部分,它独立于经典炎症小体复合体。在非经典炎症小体通路中,特定的半胱天冬酶,如人类的caspase-4/5和小鼠的caspase-11,能够直接识别并响应革兰阴性菌的脂多糖,这些半胱氨酸蛋白酶利用其N端CARD结构域与脂多糖的脂质A结构直接相互作用,触发caspase-4/5/11的寡聚化并激活,进而切割其底物蛋白GSDMD,GSDMD的裂解产生其N端片段,该片段在细胞膜上寡聚化形成多聚孔结构,导致细胞膜的破坏和细胞内容物的释放[46]。此外,caspase-4/5/11在非典型炎症小体途径中也能触发caspase-1的活化,这一过程可并非直接由脂多糖所诱发。caspase-1的活化对于促进白细胞介素1β与白细胞介素18等炎性细胞因子的成熟及释放极为关键,这些因子在引发炎症反应中发挥着核心作用[47]。此外,SARHAN等[48]利用全基因组CRISPR-Cas9筛选系统成功鉴定出链球菌热原外毒素B能够裂解GSDMA并触发焦亡。 2.3.3 其他信号通路 caspase-3/8介导的信号通路途径:除上述途径外,其他炎症蛋白介导的焦亡信号通路也在免疫防御中发挥重要作用。在小鼠巨噬细胞中感染耶尔森菌时,该菌表达的效应蛋白YopJ能抑制转化生长因子激酶1活性,从而激活caspase-8,导致GSDMD和GSDME的裂解[48]。据报道,由化疗药物激活的caspase-3可剪切GSDME,产生功能性成孔片段GSDME N端,最终导致细胞焦亡[49]。近期研究指出,肿瘤坏死因子α可激活肿瘤细胞中的caspase-8,进而触发GSDMC的裂解[50]。 颗粒酶介导的途径:研究表明,除细胞内半胱天冬酶外,微环境中存在的某些酶类可诱导癌细胞焦亡,例如,自然杀伤细胞、细胞毒性T淋巴细胞或嵌合抗原受体T细胞等免疫细胞可通过旁分泌途径生成颗粒酶,通过穿孔素递送至靶细胞中,通过切割特定的GSDM家族成员蛋白诱导肿瘤细胞焦亡[51]。颗粒酶A是颗粒酶家族中最丰富的丝氨酸蛋白酶,被认为是细胞死亡的介质。研究发现,颗粒酶A可裂解GSDMB,导致SW837和SKCO1细胞焦亡[52]。 此外,研究发现干扰素γ可通过增加GSDMB的表达来增强颗粒酶A诱导的焦亡[25]。颗粒酶B可通过2种途径激活抗肿瘤免疫反应并抑制肿瘤生长:一是直接促进GSDME的裂解,二是触发caspase-3/GSDME途径,这两种机制均能引发细胞焦亡[26]。细胞焦亡的分子机制见图4。"
2.4 细胞焦亡与乳腺癌的关系 2.4.1 乳腺癌细胞焦亡与GSDM家族 GSDM家族在人类中包含6个基因:GSDMA、GSDMB、GSDMC、GSDMD、GSDME和DFNB59。人类基因组编码一种GSDMA蛋白,而小鼠基因组则编码3种不同的GSDMA旁系同源基因,分别命名为GSDMA1、GSDMA2和GSDMA3[53-54]。GSDMA在人体中的表达主要集中在胃肠道、皮肤、食道、胃及乳腺等组织[55-56]。研究表明,当携带4T1或EMT6细胞的肿瘤小鼠模型接触三氟硼酸苯丙氨酸后再给予纳米复合物GSDMA3,可在脂质体膜上形成孔洞,进而触发细胞焦亡[57]。此外最新研究显示,人类GSDMA和小鼠GSDMA能被链球菌热原外毒素B裂解,从而触发细胞焦亡[58]。 GSDMB存在人类编码基因,而小鼠缺乏该基因。在乳腺癌中,GSDMB基因的表达水平显著升高,并可能扮演着癌基因的角色。研究显示,在HER2+乳腺癌中GSDMB的表达显著增加,并且与不良预后有关;此外,GSDMB的高表达会导致HER2+乳腺癌患者对化疗和抗HER2治疗产生耐药性[59]。在2019年,GSDMB被首次认定为癌症治疗的潜在靶点,将针对GSDMB的抗体成功递送到细胞内,能够有效抑制HER2+乳腺癌的生长和转移[60]。 GSDMC在各类肿瘤组织中的表达水平及生物学作用存在差异[61-63]。在乳腺癌的研究领域,XU等[64]对GSDMC在乳腺癌细胞与正常乳腺细胞(如MCF10A细胞系)之间的表达差异进行比较,研究结果显示,乳腺癌细胞中GSDMC的表达量显著高于正常乳腺细胞。研究发现,缺氧环境和某些化疗药物能触发GSDMC基因的表达,其机制是磷酸化的信号转导与转录激活因子3能够与进入细胞核的细胞程序性死亡-配体1发生物理性结合,这一复合体进一步与GSDMC基因的启动子区域相互作用,从而增强了乳腺癌细胞中GSDMC的转录表达[65]。 GSDMD是GSDM家族中第一个被广泛研究的成员,是在炎性小体生物学背景下发现的,并与焦亡有关[66]。GSDMD的表达受干扰素调节转录因子2的转录调控[67]。干扰素调节转录因子2对GSDMD水平的调节代表着癌症细胞死亡的一个关键调控轴,其在癌症中的缺失会导致免疫逃逸和对免疫治疗的耐药性[68]。GSDMD在乳腺癌中的表达水平显著低于邻近正常组织;此外,GSDMD高表达的乳腺癌患者肿瘤临床分期和组织学分级较低,并且者预后较好[69]。 GSDME基因在乳腺癌等几种类型癌症中的表达受到甲基化作用而沉默[70-72]。因GSDME启动子的高甲基化,GSDME在正常细胞中高表达,在肿瘤细胞中低表达。当肿瘤细胞GSDME表达较低时,DNA甲基转移酶抑制剂地西他滨可以抑制其基因启动子的高甲基化,从而导致肿瘤细胞焦亡[73]。KIM等[74]研究发现,与正常组织相比,原发性乳腺癌中GSDME的mRNA水平显著下调。然而与雌激素受体阳性的乳腺癌相比,雌激素受体阴性乳腺癌中GSDME的表达量显著较高[75]。 2.4.2 细胞焦亡对乳腺癌的抑制作用 最新研究进展揭示多种细胞机制和调节性细胞死亡途径可诱导癌细胞死亡,包括凋亡、自噬、铁死亡、坏死性凋亡和焦亡等细胞死亡形式。调节性细胞死亡信号的异常与癌症的发生和转移密切相关[76-78]。研究表明,当细胞焦亡相关信号通路被激活时,相较正常细胞,癌细胞对这种死亡信号更加敏感[79]。更重要的是,焦亡能促进免疫原性细胞死亡,提高免疫活性,杀死肿瘤细胞[80-81]。研究发现顺铂可激活MEG3/NLP3/caspase-1/GSDMD信号通路,诱导三阴性乳腺癌细胞焦亡,从而抑制肿瘤的生长和转移[82]。另一项研究表明,来自NK细胞和细胞毒性T淋巴细胞的颗粒酶A能通过切割小鼠肿瘤细胞中的GSDMB来诱导细胞焦亡,既增强抗肿瘤免疫又促进肿瘤清除[83]。同样,HOU等[65]研究发现,在缺氧环境下,细胞程序性死亡-配体1能够将MDA-MB-231和4T1细胞中由肿瘤坏死因子引发的细胞凋亡转换为由caspase-8介导的细胞焦亡过程,这种转变最终促进肿瘤细胞的坏死。有研究通过生物正交技术发现,经历焦亡的肿瘤细胞中与免疫和抗肿瘤相关的细胞及其基因表达水平有所上升,如CD4+T细胞、CD8+T细胞和NK细胞;与此同时,那些促进肿瘤生长和扩散的分子表达水平则降低[84]。因此,细胞焦亡在抗癌细胞扩散、转移、生长等方面具有重要意义。 2.4.3 细胞焦亡在乳腺癌治疗中的应用 目前,乳腺癌的治疗方式包括手术、化疗、放疗、免疫和靶向等治疗。化疗是目前最广泛的乳腺癌治疗方法,化疗药物可诱导肿瘤细胞焦亡,影响细胞活力、侵袭和迁移,从而促进肿瘤细胞死亡[85]。靶向诱导焦亡的分子与化疗药物联合使用可产生协同效应,提升化疗药物抗肿瘤效能,例如某些化疗药物可通过激活炎症小体和GSDM家族蛋白触发肿瘤细胞焦亡,有助于增强化疗药物对肿瘤的杀伤作用[86-88]。在乳腺癌免疫治疗中,触发肿瘤细胞焦亡可激活免疫细胞,从而提高癌细胞对免疫检查点抑制剂的敏感性[89-90]。此外,一些潜在的化合物在乳腺癌治疗领域发挥着重要作用。 (1)化疗和放疗:对于晚期乳腺癌患者,化疗是一种关键的全身性治疗方案,但是化疗药物的耐药缺陷常导致疾病复发和远端转移[91]。某些化疗药物通过激活与细胞焦亡相关信号通路(如炎症小体和GSDM家族蛋白)促进肿瘤细胞死亡,可克服肿瘤对传统化疗的耐药性[92]。研究表明,通过上调乳腺癌中GSDME的表达水平可诱导细胞焦亡,并提升细胞对化疗药物的敏感性[79,85]。ZHANG等[93]将紫杉醇、顺铂、阿霉素、环磷酰胺和5-氟尿嘧啶应用于MDA-MB-231和T47D细胞系,观察到阿霉素在两种细胞系中触发典型的焦亡形态,其机制是阿霉素激活活性氧/c-Jun氨基末端激酶信号通路,导致caspase-3依赖GSDME介导的乳腺癌细胞焦亡。HOU等[50]在三阴性乳腺癌细胞系MDA-MB-231进行多种化疗药物的处理,发现仅当使用某些特定类型的抗生素(柔红霉素、多柔比星、表柔比星和放线菌素D)时,能够通过激活核细胞程序性死亡-配体1/GSDMC信号通路引发焦亡现象。同样,YAN等[82]发现顺铂通过NLRP3/caspase-1/GSDMD焦亡通路在体外和体内诱导三阴性乳腺癌焦亡。最近,LI等[94]提出一种无载体的化学光动力纳米平台,其机制是结合阿糖胞苷和叶绿素E6,诱导乳腺癌细胞焦亡。 放疗对于局部晚期和转移性乳腺癌患者也是一种主要治疗方法。放射治疗通过高能辐射引起癌细胞DNA的双链断裂,进而触发细胞周期的停止、细胞衰老以及凋亡、坏死、自噬等一系列细胞死亡机制,但癌细胞放射抗性持续存在仍然是导致放疗效果不佳的关键因素[95-96]。研究发现电离辐射可促进细胞焦亡发生,并增强caspase-1活性[97]。CAO等[98]研究者指出,辐射能够触发肿瘤细胞中GSDME蛋白高表达,引发细胞焦亡,并且可以有效促进CD8+ T淋巴细胞浸润。促进肿瘤细胞发生焦亡是放疗发挥作用的一个重要途径,通过该途径放疗能够有效地消除肿瘤细胞。因此,通过放疗诱导细胞焦亡对提高放疗疗效、控制乳腺癌肿瘤生长、改善免疫微环境具有重要意义。化疗和放疗激活乳腺癌细胞焦亡的作用机制,见表2。 "
(2)免疫疗法:化疗和放疗是传统癌症治疗手段,然而这些治疗方案会迅速损伤癌细胞和正常细胞,包括重要的免疫细胞。免疫疗法是一种临床治疗策略,通过增强癌细胞的免疫原性,即癌细胞被免疫系统识别和攻击的能力,以及激活或增强身体自身的免疫反应,来对抗肿瘤细胞的免疫逃逸机制[99]。免疫检查点抑制剂治疗,特别是针对程序性死亡分子1和细胞程序性死亡-配体1的疗法,主要是通过增强已存在的肿瘤免疫反应来发挥作用,这种治疗方法可以解除肿瘤细胞逃避免疫系统监控的能力,恢复T细胞抗肿瘤活性。在缺氧条件下,细胞程序性死亡-配体1与磷酸化的信号转导与转录激活因子3结合并促进其进入细胞核;在细胞核内,细胞程序性死亡-配体1和磷酸化的信号转导与转录激活因子3复合物能增强GSDMC基因的转录,从而促进GSDMC的表达,最终导致细胞焦亡[50]。在免疫疗法中,CD8+T细胞发挥关键作用,其通过形成孔隙促进蛋白质治疗剂的传递,从而增强抗肿瘤疗效[100]。研究发现,梭菌属产生的代谢物三甲胺-N-氧化物与免疫疗法存在相关性,三甲胺-N-氧化物可触发癌细胞中GSDME介导的焦亡,并激活蛋白质激酶R样内质网激酶,增强体内CD8+T细胞介导的抗肿瘤免疫[101]。同样,尼日利亚菌素诱导的焦亡可增强CD4+ T和CD8+ T细胞的浸润和增强抗肿瘤免疫反应,并且与抗程序性死亡分子1抗体联合使用治疗三阴性乳腺癌中表现出协同作用[102]。经过放疗后,乳腺癌细胞中的GSDMD C端、NLRP3和白细胞介素18等焦亡生物标志物水平显著提高,突显活性氧生成和焦亡水平升高[103]。更重要的是WANG等[84]发现,在乳腺癌模型中仅有15%的肿瘤细胞经历细胞焦亡,其结果足以清除整个肿瘤。使用高剂量紫杉醇和光敏剂嘌呤18负载的活性氧/谷胱甘肽双重响应纳米前药,已被证实能高效地触发癌细胞特异性焦亡[104],这种策略不仅促进适应性免疫的激活,而且显著提升免疫检查点阻断疗法的有效性,为肿瘤治疗提供新的方案。然而,有学者认为免疫疗法可促进乳腺癌细胞的增殖。GAO等[105]研究发现,在焦亡过程中炎性小体的激活可以促进白细胞介素18、白细胞介素1β等炎症因子的成熟和释放,这些因子可能会抑制抗肿瘤免疫作用或引起炎症级联反应,从而在特定情况下促进肿瘤的发展。免疫疗法与乳腺癌及细胞焦亡之间的作用关系需要进一步的探索。免疫疗法激活乳腺癌细胞焦亡的作用机制,见表3。 "
(3)靶向疗法:最近研究发现,除传统凋亡途径之外,新型细胞死亡形式中的信号通路和分子为癌症治疗提供了新的治疗靶点和策略[87]。作为一种新治疗靶点,细胞焦亡在乳腺癌治疗领域展现出巨大的应用前景[106-107]。针对焦亡信号通路中关键分子的新药正在积极开发之中,其中部分药物处于临床前研究阶段,其在乳腺癌治疗中有效性和安全性正在经受严格评估。目前,纳米粒子已被开发用于激发抗肿瘤治疗中的细胞焦亡,对乳腺癌展现出抗肿瘤潜力。FAN等[108]在4T1乳腺癌异种移植模型中应用螯合顺铂和地西他滨的靶向性纳米脂质体,静脉注射靶向性纳米脂质体可通过降低GSDME基因启动子甲基化水平,提升GSDME表达水平,从而激活caspase-3/GSDME信号通路,诱导肿瘤细胞焦亡,导致肿瘤体积减少和转移情况降低。ELION等[109]使用人工合成的视黄酸诱导基因Ⅰ激动剂作用于人体细胞,发现其可激活Luminal乳腺癌、HER2+乳腺癌和三阴性乳腺癌细胞中信号转导与转录激活因子1和核因子κB信号通路,导致细胞焦亡,该项研究提示视黄酸诱导基因Ⅰ在治疗免疫反应较弱乳腺癌中的潜力。LIANG等[110]开发了一种新型的药物-聚合物混合超分子纳米前药作为焦亡诱导剂,这种药物-聚合物混合超分子纳米前药能克服药物传递过程中焦亡靶向性不足的缺陷,可通过精确释放药物,有效地激活GSDME介导的焦亡,增强抗肿瘤免疫反应。这些研究为乳腺癌提供大量靶向焦亡治疗证据,强调这一新兴治疗策略的重要临床应用价值。靶向药物激活乳腺癌细胞焦亡的作用机制,见表4。 "
(4)潜在的化合物治疗:除上述治疗方案,近年来研究学者发现一系列化合物,它们能激发细胞焦亡,对抗肿瘤。例如,AN等[111]的研究发现,四砷六醇盐通过诱导细胞焦亡可抑制三阴性乳腺癌细胞生长和转移,机制涉及Rho鸟苷三磷酸酶抑制线粒体中的信号转导与转录激活因子3蛋白磷酸化,进而激活线粒体活性氧的产生,并通过caspase-3依赖方式触发GSDME蛋白的切割,从而启动焦亡程序。此外,ω-3脂肪酸家族的二十二碳六烯酸已被确定为一种抗癌分子,PIZATO等[112]研究发现二十二碳六烯酸能够促进三阴性乳腺癌细胞中caspase-1和GSDMD的活化,促使HMGB1蛋白向细胞质区域转移,并在细胞膜上形成孔洞,提示二十二碳六烯酸可通过引发焦亡机制来杀死三阴性乳腺癌细胞。二甲双胍作为一种增敏分子,在乳腺癌治疗中通过促进腺嘌呤核糖核苷酸活化蛋白激酶/沉默信息调节因子1/核因子κB信号通路的活化发挥重要作用,其抗增殖机制包括诱导线粒体功能紊乱和触发细胞焦亡;具体而言,二甲双胍能够激活caspase-3,并诱导GSDME-PFD的表达,从而抑制乳腺癌细胞的增殖[113]。尼日利亚菌素是一种由疏水链霉菌产生的抗生素,能通过激活caspase-1/GSDMD通路来诱导三阴性乳腺癌细胞的焦亡,可作为一种潜在抗肿瘤药物,尤其是与免疫检查点抑制剂联合用于晚期三阴性乳腺癌治疗[102]。3-酰基异喹啉-1(2H)-酮通过GSDME介导途径诱导乳腺癌细胞焦亡[114]。化合物激活乳腺癌细胞焦亡的作用机制,见表5。 2.4.4 焦亡在乳腺癌中的预后价值 随着焦亡在乳腺癌中的作用逐渐被认识,近年来研究者开始关注焦亡在乳腺癌诊断和预后中的价值。最近研究发现几种与焦亡过程相关的生物标志物,这些标志物有助于预测患者的治疗预后和疾病发展[115-116],例如:焦亡相关基因构成的预后预测模型显示,焦亡与更高比例的免疫细胞浸润相关,提示更好的预后[117];GSDMC在乳腺癌细胞中表达降低,与较好的预后呈正相关[118];颗粒酶A、颗粒酶B、白细胞介素18和干扰素调控因子1基因之间的正相关可以预测乳腺癌患者的总生存期,它们表达越高说明预后更好[119]。然而,有些学者认为白细胞介素18在其他的肿瘤之间呈负相关[120]。对于白细胞介素18与肿瘤发展之间的关系,目前尚未达成一致的观点。另外,与细胞焦亡相关的长非编码RNA风险评估模型显示出对乳腺癌患者具有较高的预测价值,高风险组在生存率和预后方面明显不如低风险组[121]。一些研究者发现,在HER2+乳腺癌患者中高达60%的患者体内观察到GSDMB基因过表达或基因扩增,GSDMB蛋白的高表达水平与肿瘤的恶性进展有关联,且GSDMB的过度表达可能预示着对HER2靶向疗法不敏感,因此,GSDMB可能被视为一个新兴的肿瘤预后生物标志物[13]。多巴胺受体2基因的高表达与乳腺癌生存期呈现正相关性,特别是在HER2+乳腺癌中这种联系更为紧密,多巴胺受体2活性与激活GSDME依赖的焦亡机制相关,这可为乳腺癌的治疗提供新的策略[117]。 "
[1] SIEGEL RL, MILLER KD, WAGLE NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. [2] SIEGEL RL, GIAQUINTO AN, JEMAL A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. [3] ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23. [4] KATSURA C, OGUNMWONYI I, KANKAM HK, et al. Breast cancer: presentation, investigation and management. Br J Hosp Med (Lond). 2022;83(2):1-7. [5] HANAHAN D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1): 31-46. [6] LEI S, LI S, XIAO W, et al. Azurocidin 1 inhibits the aberrant proliferation of triple negative breast cancer through the regulation of pyroptosis. Oncol Rep. 2023;50(4):188. [7] ZHANG Z, YANG L, LEI X, et al. Mechanism of non-small cell lung cancer cell-derived exosome miR-196b-5p promoting pyroptosis of tumor T cells and tumor cell proliferation by downregulating ING5. J Biochem Mol Toxicol. 2024; 38(1):e23629. [8] WANG Y, ZOU Y, CHEN X, et al. Relevance of pyroptosis-associated genes in nasopharyngeal carcinoma diagnosis and subtype classification. J Gene Med. 2024;26(1):e3653. [9] WANG K, HAN S, LIU L, et al. Multi-Algorithm Analysis Reveals Pyroptosis-Linked Genes as Pancreatic Cancer Biomarkers. Cancers (Basel). 2024;16(2):372. [10] CHEN W, YE X, CHEN Y, et al. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anti-Cancer Drugs. 2024;35(4):344-357. [11] WU L, LU H, PAN Y, et al. The role of pyroptosis and its crosstalk with immune therapy in breast cancer. Front Immunol. 2022;13:973935. [12] ZITVOGEL L, KEPP O, GALLUZZI L, et al. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012;13(4):343-351. [13] YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. [14] FRIEDLANDER AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986;61(16):7123-7126. [15] ZYCHLINSKY A, PREVOST MC, SANSONETTI PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167-169. [16] BRENNAN MA, COOKSON BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31-40. [17] ZHANG F, DENG Y, WANG D, et al. Construction and validation of a pyroptosis-related gene signature associated with the tumor microenvironment in uveal melanoma. Sci Rep. 2022;12:1640. [18] AGARD NJ, MALTBY D, WELLS JA. Inflammatory Stimuli Regulate Caspase Substrate Profiles. Mol Cell Proteomics. 2010;9(5):880-893. [19] BROZ P, RUBY T, BELHOCINE K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288. [20] KAYAGAKI N, STOWE IB, LEE BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671. [21] SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. [22] WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99-103. [23] GALLUZZI L, VITALE I, AARONSON SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. [24] NEWTON K, WICKLIFFE KE, MALTZMAN A, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575(7784):679-682. [25] ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494): eaaz7548. [26] ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumor growth by activating anti-tumor immunity. Nature. 2020;579(7799):415. [27] ZHU C, XU S, JIANG R, et al. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther. 2024;9:87. [28] TAN Y, CHEN Q, LI X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40:153. [29] SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245-254. [30] LIN W, LIN B, ZHOU Q, et al. Gasdermin-mediated pyroptosis confers anticancer immunity. J Immunother Cancer. 2024;12(1):e008162. [31] JOHNSON AG, WEIN T, MAYER ML, et al.Bacterial gasdermins reveal an ancient mechanism of cell death. Science. 2022;375(6577):221-225. [32] LAROCK DL, JOHNSON AF, WILDE S, et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature. 2022;605(7910):527-531. [33] DENG W, BAI Y, DENG F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022;602(7897):496-502. [34] ZHONG X, ZENG H, ZHOU Z, et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature. 2023;616(7957):598-605. [35] MARTINON F, BURNS K, TSCHOPP J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417-426. [36] BURDETTE BE, ESPARZA AN, ZHU H, et al. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021;11(9):2768-2782. [37] RATHINAM VA, VANAJA SK, FITZGERALD KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333-342. [38] XU J, NÚÑEZ G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331-344. [39] ZHAO Y, YANG J, SHI J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596-600. [40] ZHANG Y, XU X, CHENG H, et al. AIM2 and Psoriasis. Front Immunol. 2023;14: 1085448. [41] SHARMA BR, KANNEGANTI TD. Inflammasome signaling in colorectal cancer. Transl Res. 2023;252:45-52. [42] JIN T, CURRY J, SMITH P, et al. Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1. Proteins. 2013;81(7):1266-1270. [43] DUNCAN JA, CANNA SW. The NLRC4 Inflammasome. Immunol Rev. 2018;281(1): 115-123. [44] KOLB R, LIU GH, JANOWSKI AM, et al. Inflammasomes in cancer: a double-edged sword. Protein Cell. 2014;5(1):12-20. [45] WANG K, SUN Q, ZHONG X, et al. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell. 2020;180(5):941-955.e20. [46] WANG C, RUAN J. Mechanistic Insights into Gasdermin Pore Formation and Regulation in Pyroptosis. J Mol Biol. 2022;434(4):167297. [47] LI H, YANG T, ZHANG J, et al. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov. 2024;10(1):32. [48] SARHAN J, LIU BC, MUENDLEIN HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018;115(46):E10888-E10897. [49] WANG M, YU F, ZHANG Y, et al. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. Front Immunol. 2024;14: 1309635. [50] HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22(10):1264-1275. [51] LIU Y, FANG Y, CHEN X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020;5(43): eaax7969. [52] ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415-420. [53] DE SCHUTTER E, ROELANDT R, RIQUET FB, et al. Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends Cell Biol. 2021;31(6): 500-513. [54] SARRIÓ D, MARTÍNEZ-VAL J, MOLINA-CRESPO Á, et al. The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188635. [55] WANG M, CHEN X, ZHANG Y. Biological Functions of Gasdermins in Cancer: From Molecular Mechanisms to Therapeutic Potential. Front Cell Dev Biol. 2021; 9:638710. [56] SAEKI N, KUWAHARA Y, SASAKI H, et al. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 2000;11(9):718-724. [57] DING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family correction appears. Nature. 2016;540(7631):150. [58] DENG W, BAI Y, DENG F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022;608(7923):E28. [59] HERGUETA-REDONDO M, SARRIO D, MOLINA-CRESPO Á, et al. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget. 2016;7(35):56295-56308. [60] MOLINA-CRESPO Á, CADETE A, SARRIO D, et al. Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clin Cancer Res. 2019;25(15):4846-4858. [61] WEI J, XU Z, CHEN X, et al. Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep. 2020;21(1): 360-370. [62] CUI YQ, MENG F, ZHAN WL, et al. High Expression of GSDMC Is Associated with Poor Survival in Kidney Clear Cell Cancer. Biomed Res Int. 2021;2021:5282894. [63] SAEKI N, USUI T, AOYAGI K, et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 2009;48(3):261-271. [64] XU D, JI Z, QIANG L. Molecular Characteristics, Clinical Implication, and Cancer Immunity Interactions of Pyroptosis-Related Genes in Breast Cancer. Front Med. 2021;8:702638. [65] HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22(11):1396. [66] LIU Z, WANG C, YANG J, et al. Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity. 2019;51(1):43-49.e4. [67] KAYAGAKI N, LEE BL, STOWE IB, et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal. 2019;12(582):eaax4917. [68] LIAO W, OVERMAN MJ, BOUTIN AT, et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35(4):559-572.e7. [69] YAN H, LUO B, WU X, et al. Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/caspase-1/GSDMD Pathway in Triple-Negative Breast Cancer. Int J Biol Sci. 2021;17(10):2606-2621. [70] IBRAHIM J, OP DE BEECK K, FRANSEN E, et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 2019; 8(5):2133-2145. [71] YOKOMIZO K, HARADA Y, KIJIMA K, et al. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer Res. 2012;32(4):1319-1322. [72] XIA Y, JIN Y, CUI D, et al. Antitumor Effect of Simvastatin in Combination With DNA Methyltransferase Inhibitor on Gastric Cancer via GSDME-Mediated Pyroptosis. Front Pharmacol. 2022;13:860546. [73] FAN JX, DENG RH, WANG H, et al. Epigenetics-Based Tumor Cells Pyroptosis for Enhancing the Immunological Effect of Chemotherapeutic Nanocarriers. Nano Lett. 2019;19(11):8049-8058. [74] KIM MS, LEBRON C, NAGPAL JK, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer.Biochem Biophys Res Commun. 2008;370(1):38-43. [75] CROES L, BEYENS M, FRANSEN E, et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer.Clin Epigenetics. 2018;10:51. [76] FANG Y, TIAN S, PAN Y, et al. Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 2020;121:109595. [77] KOREN E, FUCHS Y. Modes of Regulated Cell Death in Cancer. Cancer Discov. 2021;11(2):245-265. [78] ZUO YB, ZHANG YF, ZHANG R, et al. Ferroptosis in Cancer Progression: Role of Noncoding RNAs. Int J Biol Sci. 2022;18(5):1829-1843. [79] GONG W, FANG P, LENG M, et al. Promoting GSDME expression through DNA demethylation to increase chemosensitivity of breast cancer MCF-7 / Taxol cells. PLoS One. 2023;18(3):e0282244. [80] WANG YY, LIU XL, ZHAO R. Induction of Pyroptosis and Its Implications in Cancer Management. Front Oncol. 2019;9:971. [81] RUAN J, WANG S, WANG J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020;323:109052. [82] YAN H, LUO B, WU X, et al. Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/caspase-1/GSDMD Pathway in Triple-Negative Breast Cancer. Int J Biol Sci. 2021;17(10):2606-2621. [83] ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494):eaaz7548. [84] WANG Q, WANG Y, DING J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421-426. [85] FU C, JI W, CUI Q, et al. GSDME-mediated pyroptosis promotes anti-tumor immunity of neoadjuvant chemotherapy in breast cancer. Cancer Immunol Immunother. 2024;73(9):177. [86] ZHANG F, LIU Q, GANESAN K, et al. The Antitriple Negative Breast cancer Efficacy of Spatholobus suberectus Dunn on ROS-Induced Noncanonical Inflammasome Pyroptotic Pathway. Oxid Med Cell Longev. 2021;2021:5187569. [87] FU B, LOU Y, WU P, et al. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia. 2024;55:101017. [88] WANG JG, JIAN WJ, LI Y, et al. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci. 2021;37(7):572-582. [89] WANG Y, CHEN Y, JI DK, et al. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology. 2024;22(1):461. [90] ZHAO P, WANG M, CHEN M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 2020;254:120142. [91] MO D,TANG X, MA Y, et al. tRNA-derived fragment 3’tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer. J Transl Med. 2024;22(1):706. [92] LU L, ZHANG Y, TAN X, et al. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov. 2022;8(1):338. [93] Zhang Z, Zhang H, Li D, et al. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 2021;25(17):8159-8168. [94] LI L, TIAN H, ZHANG Z, et al. Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer. ACS Appl Mater Interfaces. 2023; 15(1):452-468. [95] NICKOLOFF JA, BOSS MK, ALLEN CP, et al. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res. 2017;6(Suppl 5): S875-S891. [96] LI L, LI Y, BAI Y. Role of GSDMB in Pyroptosis and Cancer. Cancer Manag Res. 2020;12:3033-3043. [97] LIU YG, CHEN JK, ZHANG ZT, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017;8(2):e2579. [98] CAO W, CHEN G, WU L, et al. Ionizing Radiation Triggers the Antitumor Immunity by Inducing Gasdermin E-Mediated Pyroptosis in Tumor Cells. Int J Radiat Oncol Biol Phys. 2023;115(2):440-452. [99] WEI SC, DUFFY CR, ALLISON JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8(9):1069-1086. [100] ZHOU Z, YANG R, DONG J, et al. Pore forming-mediated intracellular protein delivery for enhanced cancer immunotherapy. Sci Adv. 2022; 8(46):eabq4659. [101] CHEN S, HENDERSON A, PETRIELLO MC, et al. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metab. 2019;30(6): 1141-1151.e5. [102] WU L, BAI S, HUANG J, et al. Nigericin Boosts Anti-Tumor Immune Response via Inducing Pyroptosis in Triple-Negative Breast Cancer. Cancers (Basel). 2023; 15(12):3221. [103] HEWALA TIM, EL-BENHAWY SA, ELWANY YN, et al. Effect of Radiotherapy on Activating the Pyroptotic Cell Death Pathway in Breast Cancer Patients: The Role of Serum GSDMD-CT, NLRP3 and IL-18. Asian Pac J Cancer Prev. 2024;25(2):447-452. [104] XIAO Y, ZHANG T, MA X, et al. Microenvironment-Responsive Prodrug-Induced Pyroptosis Boosts Cancer Immunotherapy. Adv Sci (Weinh). 2021;8(24):e2101840. [105] GAO W, WANG X, ZHOU Y, et al. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7(1): 196. [106] WAN P, HE X, HAN Y, et al. Stat5 inhibits NLRP3-mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting miR-182 transcription. Chem Biol Drug Des. 2023;102(1):14-25. [107] LIU X, MIAO M, SUN J, et al. PANoptosis: a potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis. 2024;29(3-4): 277-288. [108] FAN JX, DENG RH, WANG H, et al. Epigenetics-Based Tumor Cells Pyroptosis for Enhancing the Immunological Effect of Chemotherapeutic Nanocarriers. Nano Lett. 2019;19(11):8049-8058. [109] ELION DL, JACOBSON ME, HICKS DJ, et al. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Res. 2018; 78(21):6183-6195. [110] LIANG MY, ZHANG MJ, QIU W, et al. Stepwise Size Shrinkage Cascade-Activated Supramolecular Prodrug Boosts Antitumor Immunity by Eliciting Pyroptosis. Adv Sci (Weinh). 2022;9(26):e2203353. [111] AN H, HEO JS, KIM P, et al. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 2021;12(2):159. [112] PIZATO N, LUZETE BC, KIFFER LFMV, et al. Author Correction: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8(1):9775. [113] ZHENG Z, BIAN Y, ZHANG Y, et al. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;19(10):1089-1104. [114] MA L, BIAN M, GAO H, et al. A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS One. 2022;17(5):e0268060. [115] TAN L, ZHANG H, DING Y, et al. CRTAC1 identified as a promising diagnosis and prognostic biomarker in lung adenocarcinoma. Sci Rep. 2024;14(1):11223. [116] JIANG X, ZHU Z, DING L, et al. ALKBH4 impedes 5-FU Sensitivity through suppressing GSDME induced pyroptosis in gastric cancer. Cell Death Dis. 2024; 15(6):435. [117] WANG C, ZHANG L, REN L, et al. A novel pyroptosis-related indicator of immune infiltration features and prognosis in breast cancer. Front Oncol. 2022;12:961500. [118] ZHOU Y, ZHENG J, BAI M, et al. Effect of Pyroptosis-Related Genes on the Prognosis of Breast Cancer. Front Oncol. 2022;12:948169. [119] WANG Z, BAO A, LIU S, et al. A Pyroptosis-Related Gene Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer Based on Computational Biology Techniques. Front Genet. 2022;13:801056. [120] Sun Q, Fan G, Zhuo Q, et al. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif. 2020; 53(5):e12816. [121] YANG X, WENG X, YANG Y, et al. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet. 2022;12:792106. |
[1] | Wang Qiuyue, Jin Pan, Pu Rui . Exercise intervention and the role of pyroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1667-1675. |
[2] | Wan Lingling, Wu Mengying, Zhang Yujiao, Luo Qingqing. Inflammatory factor interferon-gamma affects migration and apoptosis of human vascular smooth muscle cells through pyroptosis pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1422-1428. |
[3] | Liu Lingyun, He Guixin, Qin Weibin, Song Hui, Zhang Liwen, Tang Weizhi, Yang Feifei, Zhu Ziyi, Ou Yangbin . Improvement of myocardial injury by traditional Chinese medicine: mitochondrial calcium homeostasis mediates macrophage autophagy and pyroptosis pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1276-1284. |
[4] | He Changliang, Wang Yan, Luo Ling, Liu Jian. Human umbilical cord-derived mesenchymal stem cells thwart pyroptosis of lung tissue cells in septic mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6642-6648. |
[5] | Yu Qinghe, Cai Ziming, Wu Jintao, Ma Pengfei, Zhang Xin, Zhou Longqian, Wang Yakun, Lin Xiaoqin, Lin Wenping. Vanillic acid inhibits inflammatory response and extracellular matrix degradation of endplate chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6391-9397. |
[6] | Fan Jiaxin, Jia Xiang, Xu Tianjie, Liu Kainan, Guo Xiaoling, Zhang Hui, Wang Qian . Metformin inhibits ferroptosis and improves cartilage damage in osteoarthritis model rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6398-6408. |
[7] | Zhou Ying, Tian Yong, Zhong Zhimei, Gu Yongxiang, Fang Hao. Inhibition of tumor necrosis factor receptor associated factor 6 regulates mTORC1/ULK1 signaling and promotes autophagy to improve myocardial injury in sepsis mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6434-6440. |
[8] | Wang Wanchun, , Yi Jun, Yan Zhangren, Yang Yue, Dong Degang, Li Yumei. 717 Jiedu Decoction remodels homeostasis of extracellular matrix and promotes repair of local injured tissues in rats after Agkistrodon halys bite [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6457-6465. |
[9] | Zhang Xin, Guo Baojuan, Xu Huixin, Shen Yuzhen, Yang Xiaofan, Yang Xufang, Chen Pei. Protective effects and mechanisms of 3-N-butylphthalide in Parkinson’s disease cell models [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6466-6473. |
[10] | Zhang Songjiang, Li Longyang, Zhou Chunguang, Gao Jianfeng. Central anti-inflammatory effect and mechanism of tea polyphenols in exercise fatigue model mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6474-6481. |
[11] | Hu Shujuan, Liu Dang, Ding Yiting, Liu Xuan, Xia Ruohan, Wang Xianwang. Ameliorative effect of walnut oil and peanut oil on atherosclerosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6482-6488. |
[12] | Zhang Jian, Cai Feng, Li Tingwen, Ren Pengbo. Fatigue gait recognition of athletes based on fish swarm algorithm [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6489-6498. |
[13] | Zhang Zihan¹, Wang Jiaxin¹, Yang Wenyi², Zhu Lei¹. Regulatory mechanism of exercise promoting mitochondrial biogenesis in skeletal muscle [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6499-6508. |
[14] | Wang Jianxu, Dong Zihao, Huang Zishuai, Li Siying, Yang Guang. Interaction between immune microenvironment and bone aging and treatment strategies [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6509-6519. |
[15] | Zhang Xuesan, Zhang Zheng, Shen Le, Geng Qingqing, Tan Shusen, Lou Chunbiao, Han Kang. Natural products modulate pyroptosis for treatment of spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6520-6528. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 321
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||