Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (35): 7620-7628.doi: 10.12307/2025.962
Previous Articles Next Articles
Yang Yicheng1, 2, 3, Zheng Zhizhen1, 2, 3, Liang Shuangxue1, 2, 3, Wu Chengliang1, 2, 3, Du Yunyun1, 2, 3
Received:
2024-11-02
Accepted:
2024-12-18
Online:
2025-12-18
Published:
2025-05-07
Contact:
Du Yunyun, PhD, Associate professor, Master’s supervisor, Wuhan Sports University, Wuhan 430079, Hubei Province, China; Engineering Research Center of Sports Health Intelligent Equipment of Hubei Province, Wuhan 430079, Hubei Province, China; Key Laboratory of Sports Engineering of General Administration of Sports of China, Wuhan 430079, Hubei Province, China
About author:
Yang Yicheng, Master, Wuhan Sports University, Wuhan 430079, Hubei Province, China; Engineering Research Center of Sports Health Intelligent Equipment of Hubei Province, Wuhan 430079, Hubei Province, China; Key Laboratory of Sports Engineering of General Administration of Sports of China, Wuhan 430079, Hubei Province, China
Supported by:
CLC Number:
Yang Yicheng, Zheng Zhizhen, Liang Shuangxue, Wu Chengliang, Du Yunyun. Influence and implications of basketball shoes' functional parameters on human biomechanics[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7620-7628.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 鞋帮高度与跟杯硬度对运动生物力学表现的影响 在侧切动作中,相较于低帮鞋,高帮鞋会减少侧切腿踝关节的内翻和外旋,还会限制踝关节在矢状面和水平面上的运动[13]。有研究发现,穿着高帮鞋进行侧切动作时最大垂直地面反作用力均大于低帮,无论穿着低帮鞋还是高帮鞋,慢性踝关节不稳者与健康者在踝关节、膝关节运动幅度和地面反作用力等指标上均无差异[14]。在下落至非水平平台的研究中发现,相较于低帮鞋,在平台15°内翻条件下,高帮鞋延后了胫骨前肌和腓骨短肌的激活时间;在平台15°内翻条件和25°内翻+20°跖屈条件下,高帮鞋降低了触地前50 ms胫骨前肌、腓骨长肌和腓骨短肌的激活程度[15]。在跳跃动作中,高帮鞋能够减小跳深和上篮跳时踝关节的背曲角度,降低在上篮跳过程中的跖屈力矩及峰值功率[16]。 有研究将鞋帮高度和跟杯硬度同时作为研究对象,结果发现:在侧切动作中,相较于低帮鞋,高帮鞋和硬跟杯会缩短踝关节内翻达到峰值的时间,高帮鞋也会导致踝关节内翻初始角度、内翻峰值速度和内翻总幅度较小[17];在落地动作中,与低帮鞋相比,穿着高帮鞋表现出较小的踝关节背屈峰值和总矢状面关节活动范围、膝关节伸展力矩峰值,但膝关节内翻力矩峰值较大。硬跟杯鞋与触地时较小的踝关节内翻角度和总冠状面活动范围相关,但与软跟杯鞋相比膝关节屈曲峰值较大,总踝关节和膝关节矢状面活动范围增加;此外,穿着硬跟杯鞋增加了高帮条件下的前足地面反作用力峰值[18]。表1为鞋帮高度与跟杯硬度对运动生物力学表现的影响总结。 2.2 中底参数对运动生物力学表现的影响 2.2.1 中底硬度 目前,各项研究所设置的中底硬度区间为邵氏38 C-60 C,数值高则硬度大。在落地任务中,与"
硬中底鞋相比,穿着软中底鞋后足峰值地面反作用力较小,但前足峰值地面反作用力较高,并且这个结果不会被穿着者的体质量所影响[19-21]。另外,无论是哪种硬度的中底,减震性能衰减和舒适度感知与穿着时间高度相关,有研究发现篮球鞋在穿着4周后出现了最佳的舒适度感知[20]。在跳深动作中,相较于硬中底鞋,穿着软中底鞋还会产生较低的踝关节和髋关节屈曲力矩、增加着陆前股直肌和胫骨前肌的肌肉激活程度[21]。在上篮动作的第一步中,穿着硬中底鞋的后足加载率高于软中底鞋,穿着软中底鞋的前足峰值地面反作用力比硬中底鞋更高[19]。在跑步、冲刺、侧切和上篮这些篮球动作中,与硬中底鞋相比,穿着软中底鞋时表现出一个或多个足底区域的峰值压力较低[22]。表2为中底硬度对运动生物力学表现的影响总结。 2.2.2 中底缓震性 有团队用篮球鞋(中底科技为ZOOM MAX)和无中底设计的普通帆布鞋进行一系列对比研究,在自主落地和跳深任务中,没有发现两双鞋在运动生物力学指标和肌电指标上的明显差异,而在所有高度(30,45,60 cm)的意外落地任务中,与非篮球鞋相比,篮球鞋的峰值垂直地面反作用力和峰值载荷率更低;在45 cm高度的意外落地任务中,篮球鞋的地面反作用力频率低于非篮球鞋;在60 cm高度的意外落地任务中,篮球鞋的鞋跟至股四头肌和腘绳肌的加速度峰值传播性低于非篮球鞋,在触地后50 ms内,穿着篮球鞋时的胫骨前肌、股直肌、股外侧肌和股二头肌的肌肉激活程度低于非篮球鞋[23-25]。 另一团队根据标准机械冲击衰减测试(ASTM protocol F1976-13)将3双市售篮球鞋分为普通缓冲鞋、较好缓冲鞋和最佳缓冲鞋,并进行了一系列的研究,在45 cm和60 cm高台落地任务中,普通缓冲鞋的胫骨冲击和平均载荷高于较好缓冲鞋和最佳缓冲鞋,与其他鞋款相比,穿着缓冲性更好的鞋款时踝关节活动范围明显更大,且脚跟舒适度与冲击峰值和平均负荷率有强相关性;在直线冲刺任务中,与缓冲性能较好的鞋相比,缓冲性能一般或缓冲性能最好的鞋导致更大的胫骨冲击和冲击载荷[26-27]。 有研究在侧切、变相跑和上篮任务中发现,不同篮球鞋中底缓震科技会导致足底压力和运动状态时的舒适感差异[28]。还有研究将篮球鞋中底的前掌部分进行镂空,增加中底材料在水平面上的形变并因此减小前脚掌的剪切力,在45°侧切任务中,穿着带有剪切缓冲系统的篮球鞋比对照鞋显示出更高的水平推进冲量;此外,受试者认为穿着带有剪切缓震系统的篮球鞋更加舒适[29]。在3个角度的侧切任务中,与对照鞋相比,带有剪切缓震系统的篮球鞋推迟了垂直地面反作用力和剪切力合力第一次达到峰值的时间;在蹬伸阶段,带有剪切缓震系统的篮球鞋产生的垂直地面反作用力和剪切力合力峰值较小[30]。表3为中底缓震性对运动生物力学表现的影响总结。 2.2.3 中底厚度 有研究将标准鞋设置为前掌14 mm、后掌23 mm,其余4双实验鞋以标准中底为基础全掌减薄/增厚6 mm和3 mm,每双鞋的前后掌落差保持一致;在侧滑动作中,减薄6 mm和3 mm的鞋足内翻角度峰值低于其余的实验鞋,在冲刺动作中,更薄的中底可能可以提高冲刺表现[31]。总的来说,标准鞋减薄3 mm的篮球鞋可以同时获得最好的踝关节稳定性和最好的冲刺表现。 2.2.4 前掌弯折刚度 在上篮跳动作中,穿着硬鞋后的跖趾关节最小角速低于对照鞋,但踝关节活动范围、最大跖屈力、能量吸收与能量产生都大于对照鞋,并且中底弯折刚度不会影响跳跃高度[32]。一项研究通过在篮球鞋外底刻凹槽来调整前掌弯折刚度,结果发现在短跑和侧切动作中,穿着有较硬前掌弯折刚度的篮球鞋有更好的短跑与侧切成绩,但不影响跳跃表现[33]。另一项研究通过在篮球鞋内、外侧添加板材来改变前掌弯折刚度,相较于对照鞋和单独添加内、外侧板材的篮球鞋,穿着同时添加内侧和外侧板材的篮球鞋能够提高跳跃高度,对短跑成绩无影响,同时,单独添加内侧板材的篮球鞋在短跑中能够产生更大的跖屈速度[34]。表4为前掌弯折刚度对运动生物力学表现影响的总结。 2.3 整鞋质量对运动生物力学表现的影响 有研究分别通过在鞋跟区域和外踝至第五跖骨之间的鞋面上添加重物以改变篮球鞋质量[33,35],其中一项研究发现整鞋质量对冲刺、跳跃和侧切表现没有影响[33],另一项研究则改进了试验方案,即让受试者对篮球鞋质量差异知情和不知情,发现在知情组中更轻的鞋能够提高跳跃和滑步的表现,而不知情组中没有发现篮球鞋质量对运动表现的影响[35]。表5为整鞋质量对运动生物力学表现的影响总结。"
2.4 外底抓地力对运动生物力学表现的影响 有3项研究均通过对外底进行处理来改变实验用鞋的外底抓地力[33,36-37]。 一项研究以对照鞋为基础,在外底增加涂层或贴布来改变外底抓地力,研究结果发现,在冲刺、跳跃和侧切测试中,相对于对照鞋,当外底抓地力减少20%时,受试者穿着试验鞋后在所有测试中的成绩都明显下降,而当外底抓地力增加20%时,受试者穿着试验鞋后在跳跃和侧切测试中的成绩明显提高[33]。另外2项研究使用外底摩擦系数递增的样品鞋进行试验,结果发现在直线冲刺和曲线冲刺任务中,随着外底摩擦系数的增加,完成两项任务的时间加快,牵引力(峰值和平均值)也随之增加,当外底摩擦系数增加到0.8以上时,运动生物力学指标升高的程度开始降低[36];随着外底摩擦系数的增加,在防守滑步任务中,触地时间减少、额状面冲量增加、踝关节扭矩降低,在交叉运球任务中,矢状面冲量增加、踝关节扭矩增加,在跳跃任务中,触地时间减少、起跳高度增加。但这些参数与外底摩擦系数是非线性相关的,存在收益递减的现象[37]。表6为外底抓地力对运动生物力学表现影响的总结。"
2.5 讨论与启示 2.5.1 鞋帮高度与跟杯硬度方面 相较于低帮鞋,高帮鞋能够降低踝关节扭伤的风险,但可能会影响踝关节的本体感受和增加膝关节的负荷。而鞋帮高度对运动表现的影响存在争议。高帮鞋会限制踝关节活动范围,尤其是在矢状面和额状面上,穿着高帮鞋可能是降低运动中踝关节扭伤风险的有效方案[13-14,17]。从动力学和运动学的角度看,高帮鞋对慢性踝关节不稳者与健康者的防护效果一致[14],这可能是因为有预期的侧切动作会激发慢性踝关节不稳者的保护性神经肌肉反应[38],未来可以结合肌电指标进行深入探究。同时,鞋帮高度对侧向稳定性的影响大于跟杯硬度[17],但是在落地的触地阶段,穿着高帮鞋会造成踝关节稳定肌群的激活时间延后和激活程度降低,这可能会对踝关节的稳定性产生影响[15]。在落地动作中,穿着高帮鞋会增加膝关节的运动和载荷,这可能会增加膝关节的损伤风险[18]。然而,从运动表现的角度来看,高帮鞋会限制踝关节的正常活动范围,从而降低跳跃高度和跑步速度[39],后续研究发现这可能是因为高帮鞋会降低下肢蹬伸时的跖屈力矩和功率峰值所导致[16]。另一方面,也有研究发现高帮鞋对跳跃高度、侧切速度和敏捷表现没有负面影响[17]。这些争议结果可能是由于试验用鞋的鞋帮结构、试验方案和受试者情况等方面的差异所致。另外,篮球鞋的鞋面与鞋帮为一体成型,有研究发现高压力的中足包裹可显著提高运动表现[40],未来可以将鞋面与鞋帮结合,增加篮球鞋鞋面研究的整体性。 在试验过程中,高帮鞋会将内外踝包裹,Mark点只能粘贴在鞋帮外侧相应的位置,此时所观测的是鞋帮的活动,这可能与踝关节的运动存在误差,并且该误差是否为系统误差还有待验证,若有必要,未来也可以通过新的测量方法或技术来消除这种误差。另外,中帮鞋还未被研究者所注意到,未来可以进行相关方面的研究。同时,鞋帮高度还未被具体地定义和量化,未来可以通过改变鞋帮的材料和结构等环节提升鞋帮对穿着者的正面影响。 2.5.2 中底方面 (1)中底硬度与缓震性:球员在篮球运动中需要执行大量的跳跃任务,这会使人体承受数倍自身体质量的冲击力,增加运动损伤风险[41]。篮球鞋中底是缓冲这些冲击力的主要部分,其缓震性和硬度是科研工作者、运动装备公司和用户共同关注的焦点。峰值载荷率、胫骨冲击、标准机械冲击衰减测试(ASTM protocol F1976-13)和足底压力是评估篮球鞋的鞋缓冲和中底硬度的常见测试指标。各项研究均以邵氏C作为中底硬度的单位,所设置的中底硬度区间为邵氏38 C-60 C。峰值载荷率、胫骨冲击、标准机械冲击衰减测试(ASTM protocol F1976-13)和足底压力是评估篮球鞋的鞋缓冲性的常见测试指标。 更好的中底缓震性或更软的中底能够有效降低垂直方向的冲击,降低损伤风险并提升舒适度。在跳跃和上篮任务的触地阶段,具备良好缓冲和更软中底的篮球鞋具有更好的缓震性(较低的峰值地面反作用力、加载率和足底压力等)和舒适性[19-21,22-26],但受试者经历的冲击载荷不会因篮球鞋的缓震性发生系统变化[19,26-27]。在冲刺任务中,从胫骨冲击和冲击载荷来看,可能存在一个中底的最佳缓震性区间[27]。前后掌相同的中底硬度,在各项篮球动作中会导致前足和后足的负荷及稳定性差异[19-20],并且不会被穿着者的体质量影响[19-20]。未来可以将篮球鞋的中底分为前后掌,并分别使用合适硬度的材料以适合各种篮球动作。在跳深的触地阶段,软中底鞋会增加着陆前股直肌和胫骨前肌的肌肉激活程度[21],这可能是因为软中底鞋的稳定性不佳或软中底鞋缓冲了部分下肢蹬伸的力,需要额外的肌肉活动以维持稳定或增加蹬伸力量。在自主落地任务中,没有发现鞋的缓震性对下肢运动生物力学及神经肌肉控制情况的影响,鞋的缓震性对减少着陆冲击力的贡献可能有限[23]。而在意外落地中,篮球鞋降低了下肢肌群的激活程度并体现出了良好的减震性能[23-25],这些差异可以通过较小的肌肉预激活来解释,即篮球鞋良好的缓震性能够帮助机体缓冲震动以降低软组织的震动幅度,使抑制震动的肌肉活动减少[42]。在自主落地和意外落地中的研究成果为教练员和运动员提供了实用的信息,因为在比赛中存在大量的意外落地情况,如空中对抗后的落地;此外,篮球鞋舒适性和缓震性存在磨合期,并且会随穿着时间而衰减,未来科研人员需要注意这一点,避免对实验结果造成影响。这也提醒穿着者在更换新篮球鞋时需要进行一段时间的磨合才能发挥其最佳性能,并在其性能衰减时及时更换。 近年来,搭载超临界发泡中底技术的运动鞋受到用户青睐。相较于传统发泡技术,超临界发泡技术能够使中底具备更优秀的力学性能、舒适度和耐久度[43]。超临界发泡材料能否为高强度的篮球运动提供更佳的正面影响,是非常具有研究价值的。 (2)中底结构:前掌剪切缓冲结构和前掌11 mm、后掌20 mm的中底厚度兼具降低运动损伤和提升运动表现的功能。较高的前掌弯折刚度能够显著提升运动表现。运动员不仅在跳跃落地时会承受巨大的冲击力,在高速制动时足部也会承受巨大的剪切力[44],因此,研究者设计了一种内侧区域具有内置剪切缓冲结构的篮球鞋,并在侧切任务中展现出优良的性能,能够在制动期间通过材料形变而储存能量,在蹬离期间通过材料恢复形变而释放能量[29-30]。篮球鞋的中底存在一个最佳厚度区间(前掌11 mm、后掌20 mm),能够在侧切过程中获得最佳的踝关节稳定性和在冲刺中获得最好的冲刺表现[32],这对未来篮球鞋的中底设计具有一定的参考价值。 前掌弯折刚度是在鞋内外侧轴线周围的前掌区域中的总体弯折刚度。可以通过增加硬质的塑料板材和碳纤维板调节前掌弯折刚度,随着前掌弯折刚度增加,会增大蹬离过程中地面反作用力至跖趾关节的力臂,从而影响损伤风险和运动表现[45-46]。较高的前掌弯折刚度能增加最大跖屈速度,提升冲刺和侧切的运动表现,但对跳跃表现的影响存在争议,这可能是实验用鞋的前掌弯折刚度、试验方案和受试者情况等方面的差异所致[32-34]。前掌弯折刚度对下肢其他关节如踝关节和膝关节的运动生物力学特征以及能量转化情况也会产生影响[32-34,47];同时,内侧板与外侧板的影响差异[34]、碳板在跑鞋中大量成功的研究预示着足底刚性结构在篮球鞋设计和研究中的潜力[48-49]。但有研究发现,跑鞋中常用的全掌型碳板在横向移动中会限制足部小关节的活动度,从而增大踝关节内翻扭伤的风险,而篮球运动中包含大量的横向移动[50],这说明至少在篮球鞋中不适合设计大面积的足底刚性结构。篮球鞋中板材放置的位置、结构和材料等值得深入研究。 鞋的扭转刚度是鞋的前掌和后掌之间的相对旋转刚度,与篮球侧切运动中的峰值扭转角、踝关节内翻角和外翻角有关。合适的前掌扭转刚度在羽毛球鞋的研究中已经被证明对降低损伤风险和提升运动表现有重要作用[51]。未来,篮球鞋前掌弯折刚度和扭转刚度对前掌和中足的影响值得进一步研究,以更好地探究两者之间的关系,为篮球鞋中底的刚性结构设计提供参考;此外,在中底硬度和缓震性的研究中,拥有不同中底硬度和缓震性的篮球鞋存在不同的前掌弯折刚度,这是否会影响缓震性研究的最终试验结果是值得深入探究的。 2.5.3 整鞋质量方面 质量更轻的篮球鞋能够提升运动表现,但这种影响只发生在穿着者对鞋子质量知情的情况下。通常认为轻质的篮球鞋能够带来更快的移动速度和敏捷性,而当受试者对篮球鞋质量不知情时,篮球鞋的质量并不会对跳跃、冲刺和侧切的运动表现产生影响[33,35]。 较小的篮球鞋质量差异对运动表现的影响可能很小或不存在。在跑鞋的研究中,跑鞋质量差异超过300 g才可能会对跑者的感知和下肢运动生物力学特征产生影响[52-53]。当受试者对篮球鞋质量知情时,穿着质量较轻的篮球鞋的受试者表现出更好的跳跃和滑步表现[35],这种心理效应是非常常见的,如对鞋子宽度的感知与脚踝稳定性相关[54],鞋垫颜色和舒适感与运动控制相关[55]。这意味着运动装备和运动器材的设计和制造可以充分利用这一点来提升使用者的运动体验和运动水平发挥,同时也意味着在未来研究中需要注意消除这种潜在的心理因素,以免对研究结果造成影响。 2.5.4 外底抓地力方面 增加外底的抓地力能够显著提升冲刺、跳跃、滑步和侧切的运动表现,但存在收益递减现象。篮球鞋的外底抓地力与外底的材料和纹路设计相关。牵引力被定义为在不滑动的情况下水平地面反作用力与垂直地面反作用力的比值,优秀的抓地力能够为篮球运动中的跑、跳、急停、急起和变相等动作提供稳定的发力支点[36]。现有研究一致认为增加外底的抓地力能够提高短距离冲刺、跳跃、防守滑步和侧切变相的运动表现,这可能是因为受试者在穿着抓地力好的鞋时,会让自己的身体更倾向于地面以获得更大的水平地面反作用力,从而获得更大的水平加速度。但是,随着外底摩擦系数的提高,这种正面影响并不会线性增加,可能存在一个外底摩擦系数的最佳区间[36-37]。未来可以通过更多的研究来精确这个区间。 此外,鞋子外底的仿生设计被认为能够降低单腿落地时的损伤风险[56-57]。未来篮球鞋外底的设计可以将抓地力与仿生设计融合,以产生更优的性能表现。场地材料和空气湿度等也是影响篮球鞋外底抓地力的重要因素,未来可以结合外底材料和外底纹路进行研究,设计出适配不同场地和环境的篮球鞋外底。"
[1] 陈志坚,周鹏,王晓军.篮球[M].北京:清华大学出版社,2015:21-23,137. [2] ABDELKRIM NB, EL FAZAA S, EL ATI J. Time–motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41(2):69-75. [3] MINGHELLI B, QUEIROZ S, SOUSA I, et al. Musculoskeletal injuries in basketball players Southern Portugal: Epidemiology and risk factors. North Clin Istanb. 2022;9(1):14-22. [4] 赵祎凡,赵可伟.运动能力标准化评价的研究:基于NBA选秀测试成绩标准分数及TSA的分析[J].中国体育科技,2023,59(7):33-38,52. [5] TERAMOTO M, CROSS CL, RIEGER RH, et al. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res. 2018;32(2):396-408. [6] ANDREOLI CV, CHIARAMONTI BC, BIRUEL E, et al. Epidemiology of sports injuries in basketball: integrative systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000468. [7] ABDOLLAHI S, SHEIKHHOSEINI R. Sport-related injuries in Iranian basketball players: evidence from a retrospective epidemiologic study (2019–20). Phys Sportsmed. 2022;50(5):406-413. [8] WANG F, ZHENG G. What are the changes in basketball shooting pattern and accuracy in National Basketball Association in the past decade? Front Psychol.2022;13(8):917-980. [9] MACK CD, HERZOG MM, MAAK TG, et al. Epidemiology of Injuries Among National Basketball Association Players: 2013-2014 Through 2018-2019. Sports health. 2024:19417381241258482.doi: 10.1177/19417381241258482. [10] BOUCHÉ RT. Racquet sports:Tennis,badminton,squash,racquetball,and handball//WERD M,KNIGHT E. Athletic Footwear and Orthoses in Sports Medicine. New York:Springer, 2010:215-223. [11] GANDOMKAR A, ESLAMI M, YOUSEFPOUR R, et al. On-court evaluation of selected key indicators of fitness among elite basketball players. J Sports Med Phys Fitness. 2021;62(1):39-46. [12] AKSOVIĆ N, BUBANJ S, BJELICA B, et al. Sports injuries in basketball players: a systematic review. Life. 2024;14(7):898. [13] LAM GWK, PARK EJ, LEE KK, et al. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance. J Sports Sci. 2015;33(16):1738-1749. [14] 周志鹏,郑亮亮,孙萌梓,等.鞋帮高度对踝关节不稳者侧切动作下肢生物力学特征的影响[J].中国运动医学杂志,2021,40(5):352-359. [15] FU W, FANG Y, LIU Y, et al. The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface. J Foot Ankle Res. 2014;7(14):1-10. [16] 傅维杰,何俊良,王熙,等.鞋帮高度对跳跃动作踝关节矢状面运动学及动力学特征的影响[J].医用生物力学,2015,30(6):528-534. [17] LIU H, WU Z, LAM WK. Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball. Res Sports Med. 2017;25(2):209-218. [18] LAM WK, CHEUNG CCW, LEUNG AKL. Shoe collar height and heel counter-stiffness for shoe cushioning and joint stability in landing. J Sports Sci. 2020;38(20):2374-2381. [19] NIN DZ, LAM WK, KONG PW. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres. J Sports Sci. 2016;34(8):756-765. [20] LAM WK, LIU H, WU GQ, et al. Effect of shoe wearing time and midsole hardness on ground reaction forces, ankle stability and perceived comfort in basketball landing. J Sports Sci. 2019;37(20):2347-2355. [21] ALONZO R, TEO C, PAN JW, et al. Effects of basketball shoe midsole hardness on lower extremity biomechanics and perception during drop jumping from different heights. Appl Sci. 2020;10(10): 3594. [22] LAM WK, NG WX, KONG PW. Influence of shoe midsole hardness on plantar pressure distribution in four basketball-related movements. Res Sports Med. 2017;25(1):37-47. [23] FU W, LIU Y, ZHANG S. Effects of footwear on impact forces and soft tissue vibrations during drop jumps and unanticipated drop landings. Int J Sports Med. 2013;34(6):477-483. [24] FU W, FANG Y, GU Y, et al. Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops. J Sci Med Sport. 2017;20(10):915-920. [25] WANG X, ZHANG S, FU W. Changes in impact signals and muscle activity in response to different shoe and landing conditions. J Hum Kinet. 2017;56(1):5-18. [26] WEI Q, WANG Z, WOO J, et al. Kinetics and perception of basketball landing in various heights and footwear cushioning. PloS One. 2018; 13(8):e0201758. [27] LAM WK, LIEBENBERG J, WOO J, et al. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players? PeerJ. 2018;6:e4753. [28] ZHANG X, LUO Z, WANG X, et al. Shoe cushioning effects on foot loading and comfort perception during typical basketball maneuvers. Appl Sci. 2019;9(18):3893. [29] LAM WK, QU Y, YANG F, et al. Do rotational shear-cushioning shoes influence horizontal ground reaction forces and perceived comfort during basketball cutting maneuvers? PeerJ. 2017;5:e4086. [30] CONG Y, LAM WK. Effects of shear reduction shoes on joint loading, ground reaction force and free moment across different cutting angles. J Sports Sci. 2021;39(12):1386-1394. [31] 滕进,申思琴,曲峰.篮球鞋中底厚度对冲刺和侧滑的影响[J].北京体育大学学报,2023,46(8):123-132. [32] ZHU Z, FU W, SHAO E, et al. Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps. Appl Sci. 2020; 10(1):397. [33] WOROBETS J, WANNOP JW. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sports Biomech. 2015;14(3):351-360. [34] LAM WK, LEE WCC, LEE WM, et al. Segmented forefoot plate in basketball footwear: does it influence performance and foot joint kinematics and kinetics? J Appl Biomech. 2018;34(1):31-38. [35] MOHR M, TRUDEAU MB, NIGG SR, et al. Increased athletic performance in lighter basketball shoes: shoe or psychology effect? Int J Sports Physiol Perform. 2016;11(1):74-79. [36] LUO G, STEFANYSHYN D. Identification of critical traction values for maximum athletic performance. Footwear Sci. 2011;3(3):127-138. [37] WANG X, CAO K, BAI Y, et al. Unveiling the Biomechanical Insights: Motor Control Shifts Induced by Shoe Friction Adjustments and Their Impact on Defensive Slide, Crossover Dribbling, and Full Approach Jump in Basketball. Appl Sci. 2024;14(7):2869. [38] SIMPSON JD, KOLDENHOVEN RM, WILSON SJ, et al. Ankle kinematics, center of pressure progression, and lower extremity muscle activity during a side-cutting task in participants with and without chronic ankle instability. J Electromyogr Kinesiol. 2020;54:102454. [39] BRIZUELA G, LLANA S, FERRANDIS R, et al. The influence of basketball shoes with increased ankle support on shock attenuation and performance in running and jumping. J Sports Sci. 1997;15(5):505-515. [40] 吴成亮,吴涛.中足包裹对篮球爱好者跑跳动作下肢生物力学的影响[J].医用生物力学,2024,39(S1):160. [41] MCCLAY IS, ROBINSON JR, ANDRIACCHI TP, et al. A profile of ground reaction forces in professional basketball. J Appl Biomech. 1994;10(3): 222-236. [42] KIM JH, LEE KK, KONG SJ, et al. Effect of anticipation on lower extremity biomechanics during side-and cross-cutting maneuvers in young soccer players. Am J Sports Med. 2014;42(8):1985-1992. [43] 王超,王伟雯,郑峥巍,等.EVA/SEBS共混材料超临界发泡工艺及性能[J].塑料工业,2023,51(3):178-183,189. [44] CONG Y, LAM WK, CHEUNG JTM, et al. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers. J Biomech. 2014; 47(16):3799-3806. [45] WANNOP JW, SCHRIER N, WOROBETS J, et al. Influence of forefoot bending stiffness on American football performance and metatarsophalangeal joint bending angle. Sports Biomech. 2023;22(5): 704-714. [46] MA R, LAM WK, DING R, et al. Effects of Shoe Midfoot Bending Stiffness on Multi-Segment Foot Kinematics and Ground Reaction Force during Heel-Toe Running. Bioengineering. 2022;9(10):520. [47] PARK SK, LAM WK, YOON S, et al. Effects of forefoot bending stiffness of badminton shoes on agility, comfort perception and lower leg kinematics during typical badminton movements. Sports Biomech. 2017;16(3):374-386. [48] SONG Y, CEN X, SUN D, et al. Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Sci Rep. 2024;14(1):13215. [49] RODRIGO-CARRANZA V, HOOGKAMER W, GONZÁLEZ-RAVÉ JM, et al. Relationship between advanced footwear technology longitudinal bending stiffness and energy cost of running. Scand J Med Sci Sports. 2024;34(6):e14687. [50] MARTIN C, TOUZARD P, HORVAIS N, et al. Influence of shoe torsional stiffness on foot and ankle biomechanics during tennis forehand strokes. Eur J Sport Sci2023;23(6):914-924. [51] SHEN S, TENG J, FEKETE G, et al. Influence of Torsional Stiffness in Badminton Footwear on Lower Limb Biomechanics. J Sports Sci Med. 2024;23(1):196. [52] KESHVARI B, ALEVRAS S, SENNER V. Sensory perception of varied shoe masses in running. J Am Podiatr Med Assoc. 2023;113(1):21-229. [53] WANG IL, GRAHAM RB, BOURDON EJP, et al. Biomechanical analysis of running foot strike in shoes of different mass. J Sports Sci Med. 2020;19(1):130. [54] LAW JCL, WONG TWL, CHAN DCL, et al. Effects of shoe top visual patterns on shoe wearers’ width perception and dynamic stability. Percept Mot Skills. 2018;125(4):682-695. [55] WANG Y, LAM WK, CHEUNG CH, et al. Effect of red arch-support insoles on subjective comfort and movement biomechanics in various landing heights. Int J Environ Res Public Health. 2020;17(7):2476. [56] ZHOU H, CHEN C, XU D, et al. Biomechanical characteristics between bionic shoes and normal shoes during the drop-landing phase: A pilot study. Int J Environ Res Public Health. 2021;18(6):3223. [57] 吕杰,聂智超,张延海,等.基于生物力学数据的足底特征区域划分[J].中国组织工程研究,2020,24(36):5774-5778. [58] COLLINGS TJ, GORMAN AD, STUELCKEN MC, et al. Exploring the justifications for selecting a drop landing task to assess injury biomechanics: a narrative review and analysis of landings performed by female netball players. Sports Med. 2019;49:385-395. [59] 周文星,王琳.人体运动过程中侧切落地模式和角度对下肢运动生物力学的影响[J].中国组织工程研究,2021,25(32):5184-5190. [60] SIGURÐSSON HB, SVEINSSON þ, BRIEM K. Timing, not magnitude, of force may explain sex-dependent risk of ACL injury. Knee Surg Sports Traumatol Arthrosc. 2018;26:2424-2429. [61] DEWIG DR, BOLTZ AJ, MOFFIT RE, et al. Epidemiology of Anterior Cruciate Ligament Tears in National Collegiate Athletic Association Athletes: 2014/2015–2018/2019. Med Sci Sports Exerc. 2024;56(1): 29-36. |
[1] | Li Liangkui, Huang Yongcan, Wang Peng, Yu Binsheng. Effect of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1761-1767. |
[2] | Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao. Xu Biao, Lu Tan, Jiang Yaqiong, Yin Yujiao [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1768-1774. |
[3] | Zhou Jinhai, Li Jiangwei, Wang Xuquan, Zhuang Ying, Zhao Ying, Yang Yuyong, Wang Jiajia, Yang Yang, Zhou Shilian. Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1775-1782. |
[4] | Fu Enhong, Yang Hang, Liang Cheng, Zhang Xiaogang, Zhang Yali, Jin Zhongmin. OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1789-1795. |
[5] | Sun Xiaojun, Wang Huaming, Zhang Dehong, Song Xuewen, Huang Jin, Zhang Chen, Pei Shengtai. Effect of finite element method in treatment of developmental dysplasia of the hip in children [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1897-1904. |
[6] | Lu Jieming, Li Yajing, Du Peijie, Xu Dongqing. Effects of artificial turf versus natural grass on biomechanical performance of the lower limbs in young females during jump-landing [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1101-1107. |
[7] | Wang Lei, Li Chengsong, Zhang Shenshen, Wang Qing. Finite element analysis of biomechanical characteristics of three internal fixation methods in treatment of inferior patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7048-7054. |
[8] | Xu Xin, Wurikaixi·Aiyiti, Lyu Gang, Maimaiaili·Yushan, Ma Zhiqiang, Ma Chao. Finite element analysis of four different internal fixation methods for complex acetabular double-column fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7063-7071. |
[9] | Liang Cheng, Zhuo Chuanchuan, Zhang Xiaogang, Wang Guan, Duan Ke, Li Zhong, Lu Xiaobo, Zhuo Naiqiang, Jin Zhongmin. Biomechanical characteristics of a novel sacroiliac lag screw [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7080-7086. |
[10] | Ma Shuangshuang, Gao Dedong, Shan Zhongshu, Xu Wenxu, Lu Zhirui. Finite element analysis and biomechanical validation of revision pedicle screw placement [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7087-7095. |
[11] | Yang Yu, Li Yinghao, Duo Zhuangzhi, Zhou Dingrong. Effect of overall functional physical exercise on lumbar biomechanics in patients with lumbar disc herniation after surgery [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7096-7101. |
[12] | Zhang Ziyi, Qin Qi, Alimujiang·Yusufu, Liu Yuzhe, Yusufu·Reheman, Ran Jian. Biomechanical analysis of three internal fixation schemes for Pauwels type III femoral neck fractures in young adults [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7102-7108. |
[13] | Ma Tao, Li Xing, Wei Yajun, Deng Juncai. Effects of lateral screw-rod placement positions on segmental range of motion, internal fixation and cage stress during oblique lumber interbody fusion [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7165-7172. |
[14] | Xu Tianyu, Chen Modi, Xie Mingru, Ye Xinghua, Pan Zhaohui. Finite element analysis of biomechanical effect of medial or lateral malleolar ligament defects on its neighboring core tendons [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7223-7230. |
[15] | Song Xubin, Wu Dou, Zhao Enzhe, Zhang Xingyu, Zhang Xiaolun, Wang Chuheng. Finite element analysis of a new femoral neck spiral blade system to treat femoral intertrochanteric fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7041-7047. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||