Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (27): 5890-5896.doi: 10.12307/2025.192
Previous Articles Next Articles
Shaban Amiri Nzelekela, Yang Lianbo, Li Peng
Received:
2023-11-13
Accepted:
2024-06-21
Online:
2025-09-28
Published:
2025-03-06
Contact:
Li Peng, Chief physician, Master’s supervisor, Department of Joint and Sports Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
About author:
Shaban Amiri Nzelekela, Master candidate, Department of Joint and Sports Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
Supported by:
CLC Number:
Shaban Amiri Nzelekela, Yang Lianbo, Li Peng. Objective accuracy of six degree of freedom gait analysis system in evaluating the severity of knee osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(27): 5890-5896.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 评估膝骨关节炎病情严重程度的传统方法及其优缺点 2.1.1 评估膝骨关节炎病情严重程度的传统方法 评估膝骨关节炎的传统方法包括患者报告结果测量和影像学评估,诸如西安大略和麦克马斯特大学骨关节炎评分及膝关节损伤和骨关节炎结果评分,西安大略和麦克马斯特大学骨关节炎评分包括疼痛、僵硬、功能障碍3个维度;膝关节损伤和骨关节炎结果评分包含疼痛、症状、日常生活、运动与娱乐、生活质量5个维度[30]。其中,对于患者报告的结果测评,评估者优先考虑的是患者的感受,反映的是患者主观表达关节不适、僵硬和功能受限[8,30]。而影像学评估,则是通过 X射线片检查来透视膝关节的结构变化,包括关节间隙的狭窄、下肢力线的改变等等[31-32]。MRI可作为 X 射线检查的补充手段,进一步更加详细地观察膝关节结构和软组织的变化[33-34]。 2.1.2 传统方法的优越性 这些方法可为诊断膝骨关节炎提供有价值的依据。患者报告结果测量的标准化,可确保不同医疗机构评估的一致性[35]。以患者为中心的患者报告结果测量可揭示患者对膝骨关节炎病情的认知,从而加深对膝骨关节炎病情的理解[36]。影像学评估提供客观的膝关节结构变化,有助于评估膝骨关节炎的进展[32]。MRI可反映软组织的变化,更进一步地评估膝关节的结构变化[33]。 2.1.3 传统方法的局限性 患者报告结果测量依赖于患者的主观报告,不可避免地受主观性和可变性影响,导致标准不规范[37-38],这种方法主要关注于症状的表达,可能无法直接评估潜在的结构改变,会导致对膝骨关节炎严重程度的评估不全面;同时,患者的依从性和真实性会影响患者报告结果测量的准确性,从而会影响评估结果的可靠性[38]。放射学和MRI在评估膝骨关节炎的动态变化和功能方面存在局限性,它们仅仅反映的是静态膝关节的结构变化,往往忽视了患者身体的代偿潜能,也就不能真实体现膝关节功能障碍程度以及患者选择治疗措施的意愿[4]。 总之,传统方法在提供有价值的诊断依据方面有其优势,目前的诊断治疗指南仍然以上述的观测指标作为依据。作者以为上述指标也存在局限性,包括患者对症状关注的倾向性和潜在的主观性,但随着新研究方法的出现、新设备的研发,诸如捕捉动态变化、测量膝关节动力学数据进行的步态分析,会提供更全面、更客观的评估方法。 2.2 评估膝骨关节炎病情严重程度的步态分析及其优缺点 2.2.1 步态分析方法 步态分析的出现,起初是依靠临床医生肉眼观察及手工测量,利用步长和步行速度等基本数据来了解步态。随着观测设备的发展,运动捕捉系统被应用于该领域,并从2D系统发展为后来的3D系统,才真正实现从多视角捕捉关节运动轨迹,才能更准确地测量实际步行状态下多维度的关节运动数据。换言之,才真正实现将关节运动的复杂性展示出来。具体来说,起初人们仅仅测量四自由度步态数据,此后,为展示膝关节三维空间的步行状态,于是催生了六自由度步态分析的发展[39-40]。 六自由度步态分析对人体步态或运动中的六自由度进行详细分析,这种分析提供了关于步态的全面信息,包括在3个方向上的位移和角度,通过测量膝关节在水平、垂直和前后方向上的运动,以及围绕3个轴的角度,它可以更精细地理解人体步态中膝关节的运动特征和模式[41]。这些测量有助于医务人员评估膝关节的生物力学特征。 六自由度包括角度和位移参数。角度参数包括膝关节伸屈、内外旋和内外翻;位移参数包括胫骨相对股骨的前后位移、内外位移和远近位移[42]。六自由度可捕捉膝关节发生的静态和动态变化[42]。关于膝关节六自由度步态分析内容如下: 屈伸角度是用于量化膝关节运动程度的指标,特别是与屈伸程度有关的指标,这种测量方法是评估关节活动度和确定膝骨关节炎造成功能受限程度的重要工具。内外旋是量化胫骨相对于股骨的内旋和外旋程度的指标,这一指标对于评估膝关节的旋转对齐情况至关重要,有助于发现与关节力学相关的问题。内外翻对齐角是用于评估膝关节在冠状面对齐情况的指标,该测量方法涉及评估股骨和胫骨之间形成的角度,可用于识别内收角度和外展角度畸形。这些畸形在膝骨关节炎患者中经常出现[42-43]。 前后位移是膝关节内胫骨相对于股骨的前后位移的指标,这种测量方法可用于明确胫骨在膝骨关节炎作用下的异常运动,因为这种运动可能会影响膝关节的稳定性。内外位移是测量胫骨相对于股骨的横向位移的指标,其作用是确定胫骨在内侧或外侧是否存在异常移动,这种移动可能会对关节稳定性产生不利影响。上下位移是评估胫骨相对于股骨的垂直位移的指标,这种测量方法有助于确定胫骨是否存在异常升高或下降,这可能会对负重和关节负荷产生影响[42-43]。 目前采用的步态分析设备,商品名为Opti-Knee(Innomotion Inc.中国),可测量6个自由度步态数据的角度、位移。该设备探测关节活动角度及位移数据并自动记录检测到的数据,同时通过设备内部的分析系统软件描绘图像,用于后期分析。该设备配备8个红外线反射标记、2个绑带(1个绑带由4个红外线反射标记组成)、1个探头、1个双向跑步机、双头立体红外摄像机和1台电脑工作站。见图4。"
该步态分析系统Opti-Knee(Innomotion Inc.中国)能够便利地收集6个自由度的角度和位移数据(角度参数包括膝关节伸屈、内外旋和内外翻,位移参数包括胫骨相对股骨的前后位移、内外位移和远近位移)。具体使用方法如下:在骨性解剖标志处放置红外线反射标志作标记点,特别是在膝关节周围,有助于跟踪和记录运动。高速双头立体红外摄像机检测标记的运动,在三维空间中捕捉它们的位置,当患者在双向跑步机上行走时。随后,步态分析软件处理这些运动,解读标记位置以计算各种维度上的角度和平移运动。该系统生成视觉输出,展示了整个步态周期中膝关节角度和位移运动。这些视觉表示有助于分析关节运动、识别异常,对六自由度下膝关节运动进行全面评估提供定量和客观的数据[44-45]。 2.2.2 六自由度步态分析在膝骨关节炎评估中的优势 通过测量分析六自由度步态分析数据,可以从多维度更全面地评估膝关节活动度,包括正常活动中的活动角度和位移距离,为评估膝骨关节炎严重程度提供了一种更加全方位的立体方法[44-45]。将六自由度步态分析与运动采集系统集成,可同时跟踪多个关节,从而提供关节运动和生物力学的整体视图[45]。这种方法极大程度地排除了对主观判断的依赖,为更准确地评估膝骨关节炎的严重程度提供了精确的量化依据[46]。通过观察膝关节在动态活动中的表现,可更加形象地了解导致关节功能障碍的因素,并据此进行个性化干预,最终缓解疼痛、修复关节功能,提高患者生活质量。 2.2.3 六自由度步态分析的局限性 在涉及六自由度步态分析时,有几个限制需要考虑。首先是数据解释的复杂性,分析和理解从六自由度步态分析中积累的大量数据可能具有挑战性。这些数据的复杂性需要具备生物力学和步态分析方面的专业知识,才能进行准确的解释。其次,运动伪影也是一个重要的限制因素。外部因素,例如标记的移动或皮肤上的伪影,可能会影响所收集数据的准确性。因此,确保标记的稳定性并尽量减少外部干扰对于进行精确的分析至关重要[47]。 2.2.4 六自由度步态分析应用于膝骨关节炎诊治过程中的临床意义 六自由度步态分析已在矫形、运动医学和康复领域得到广泛研究。综合分析文献,六自由度步态分析在评估膝骨关节炎严重程度方面有如下意义: (1)六自由度步态分析有利于膝骨关节炎早期诊断并应用于病情监测:监测疾病进展在各种疾病的管理和优化治疗中发挥着核心作用,尤其是骨关节炎等慢性疾病[48]。就膝骨关节炎而言,纵向监测骨关节炎的进展对于评估干预措施的效果和完善治疗方案至关重要[49]。 传统的评估方法诸如西安大略和麦克马斯特大学骨关节炎评分通常依赖于主观评估,可能无法捕捉到关节运动学的变化。与传统的评估方法相比,六自由度步态分析在捕捉关节运动学微小变化方面,具有显著的优势[50]。 通过六自由度测量可以识别并量化传统评估方法无法获得关节功能的微小变化[50],这种更高的灵敏度对膝骨关节炎等疾病的评估尤其重要,因为这些疾病通常会慢慢地发生细微的变化。于是,六自由度测量评估是监测关节运动学随时间变化的重要工具[51]。 ZHENG等[52]使用六自由度步态分析方法研究了接受内侧单间室关节置换术治疗患者外侧间室骨关节炎的进展情况,他们测量了膝关节的单腿弓步外侧室接触位置和六自由度步态分析,并与正常膝关节进行了比较,结果发现,在单腿下蹲时,六自由度发生了改变,接触面位移范围减小,这些变化与外侧骨关节炎的进展有关。同样,IKUTA等[53]对不同阶段膝骨关节炎患者的六自由度进行了研究,结果显示,随着膝骨关节炎的进展,膝关节屈伸过程中胫骨后移和外旋的趋势越来越明显,这些动力学变化与软骨退变和膝骨关节炎的进展有关。 膝关节负荷不断增加,可逐渐导致软骨退变。肥胖者更容易罹患膝骨关节炎,在一项关于减肥有利于缓解肥胖症患者骨关节炎症状的研究中,LI等[54]对减肥前后1年的肥胖症患者的六自由度进行了研究,结果发现,体质量减轻者的膝关节运动学状况有所改善。同样,全身关节过度活动症也是一种会增加骨关节炎发病率的疾病。ZHONG等[55]研究了全身关节过度活动症患者和非全身关节过度活动症患者的六自由度膝关节运动学,他们发现,全身关节过度活动患者的六自由度与运动学变化有关,而运动学变化与软骨退变和膝骨关节炎的进展有关。此外,有报道称,前交叉韧带缺损的患者由于股胫骨相对区域的应力增加,患膝骨关节炎的风险也会增加。DEFRATE等[56]对前交叉韧带损伤患者的六自由度进行了研究,他们发现前交叉韧带损伤患者的胫骨向内侧移位,从而改变了胫骨内侧软骨上的应力分布,这可能是前交叉韧带损伤患者出现膝骨关节炎的原因。此外,在一项研究负荷对膝关节影响的研究中,YANG等[57]研究了健康人膝关节在无负荷和负荷体质量60%时的六自由度,研究人员发现,随着负荷的增加,膝关节的六自由度也会发生变化。 这些动力学变化与软骨变化和膝骨关节炎的进展有关,通过早期检测关节功能的变化,临床医生可以主动进行干预,从而有可能减缓疾病的进展,并推迟接受手术的期限。 (2)六自由度测量为个体化治疗方案的制定提供了依据:在对膝骨关节炎的评估中,如根据六自由度测量结果制定个体化的治疗策略,势必会具有更大优势。依据传统评估方法,通常只能制定一种比较宽泛、模糊的治疗方法,缺乏更加精准客观的定量指标作为治疗指南,而六自由度测量可提供个性化数据,指导干预治疗措施,以恢复更自然的关节运动模式。通过同时考量影像学结果和人体动力学信息,外科医生及康复医生可以做出更精准的选择,从而显著提高手术效果和患者满意度。 现在已经有学者进行了相关方面的治疗体验。HUANG等[58]对膝关节内侧骨关节炎患者手术前的六自由度数据进行研究,研究术前的运动变化,然后对患者进行了腓骨截骨术治疗单间室骨关节炎;截骨术后再次测量六自由度数据,重新评估患者的关节活动度,结果发现,术后3个月,股骨外翻增加了5°-7°,股骨外旋增加了 5°-8°;术后1年,股骨外旋增加了 3°-5°,股骨端下移增加了2-10 mm,这表明术后的六自由度数据比手术前有所改善。此外,段德胜等[59]研究了腓骨截骨术前、术后膝骨关节炎患者的六自由度情况。截骨术前患者的屈伸角度为(18±14)°,内外旋角度为(6.3±2.1)°,前后位移为(0.3±0.5) cm,上下位移为(0.02±0.29) cm,内外位移为(-0.3±0.4) cm;术后屈伸角、内外旋角、前后位移、上下位移和内外位移的数值分别为(27±15)°、(0.8±2.5)°、 (-0.5±0.6) cm、(-0.14±0.17) cm、(-0.7±0.4) cm,所有结果均具有统计学意义,最后他们得出结论,腓骨截骨术改善了膝骨关节炎患者的运动学特性。此外,TAKEMAE等[60]研究了内侧膝骨关节炎患者在胫骨高位截骨术前、术后的六自由度情况,结果发现,在胫骨高位截骨手术之前,大多数患者表现为胫骨内翻,少数患者表现为胫骨外旋;在胫骨高位截骨术之后,大多数患者的胫骨内翻消失,有些患者甚至表现出胫骨旋转消失;这项研究表明,推力主要与负重轴的改变有关,而旋转似乎与关节的对合度关系更为密切。据VAN DER STRAATEN 等[61]报道,他们利用六自由度测量为膝骨关节炎患者的个性化康复计划提供帮助,研究人员分析了各种功能锻炼期间的关节状态,并将这些结果与患者报告结果进行比较,进而制定康复计划。在另一项研究中,GUO等[62]研究了在行走和慢跑过程中为膝关节穿戴整体免荷矫形器健康人的六自由度数据,他们发现,佩戴者的膝关节六自由度上下位移增加,内外翻角度减小,这些运动学变化显示减少了股胫骨关节的应力,因此膝关节整体免荷矫形器可用于康复治疗。这些多元化的研究共同凸显了六自由度测量在评估康复或术后变化、理解关节动态方面的巨大潜力,并可能为患有膝骨关节炎的患者量身定制个性化治疗策略,这些发现强调了在个性化膝骨关节炎治疗领域中整合六自由度步态分析的重要性。 (3)使用六自由度步态分析探索膝骨关节炎的手术干预:在进行各种手术干预的膝骨关节炎患者中,对六自由度步态分析的探索揭示了对植入物和假体选择的重要见解。在一项研究中,ZENG等[63]分析了膝关节内侧骨关节炎患者在分别接受活动垫片和固定垫片全膝关节置换术前后的六自由度测量数据,他们发现,与固定垫片全膝关节置换患者相比,接受活动垫片全膝关节置换患者的膝关节运动学特征更接近健康人的运动学特征,强调了这种手术在恢复膝关节固有运动状态方面的潜在优势。在另一项研究中,翟永喜等[64]观察了膝骨关节炎患者在斜坡行走时膝关节的六自由度数据,这些患者分别接受了膝关节单髁置换术或全膝关节置换术,与正常膝关节进行对照,他们发现,相比接受全膝关节置换的患者,接受膝关节单髁置换患者的六自由度与正常膝关节活动范围接近,显示六自由度步态分析对评估不同手术方式的预后具有一定意义。KOUR等[65]比较了3种全膝关节置换置入假体的设计,分别是后稳定、保留交叉韧带和内侧稳定,该研究纳入了75例置入不同假体的患者,并在术后6个月进行了多种活动的评估,研究结果显示,后稳定和保留交叉韧带置入假体显示出相似的膝关节运动,而内侧稳定表现出更接近健康膝关节功能的特有运动模式。这些研究彰显了六自由度步态分析在评估和阐述不同手术干预效果方面的重要性,有助于骨科医生选择更贴近自然膝关节功能的假体。六自由度测量数据有助于为假体选择提供信息,但并不能直接确保外科医生精确选择和放置膝关节内的假体。骨关节炎手术治疗中假体的选择,是基于多种因素的,除了六自由度测量数据外,患者骨关节炎的严重程度分级也是重要的参考依据。"
[1] SHARMA AR, JAGGA S, LEE SS, et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci. 2013;14(10):19805-19830. [2] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1):56. [3] DELPLACE V, BOUTET MA, LE VISAGE C, et al. Osteoarthritis: From upcoming treatments to treatments yet to come. Joint Bone Spine. 2021;88(5):105206. [4] ZENG X, MA L, LIN Z, et al. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Sci Rep. 2017; 7(1):4080. [5] MARTEL-PELLETIER J, BOILEAU C, PELLETIER JP, et al. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22(2):351-384. [6] MUSTONEN AM, NIEMINEN P. Extracellular vesicles and their potential significance in the pathogenesis and treatment of osteoarthritis. Pharmaceuticals (Basel). 2021;14(4):315. [7] ABHISHEK A, DOHERTY M. Diagnosis and clinical presentation of osteoarthritis. Rheu Dis Clin North Am. 2013;39(1):45-66. [8] ALKAN BM, FIDAN F, TOSUN A, et al. Quality of life and self-reported disability in patients with knee osteoarthritis. Mod Rheumatol. 2014; 24(1):166-171. [9] ZHAO X, MENG F, HU S, et al. The synovium attenuates cartilage degeneration in KOA through activation of the Smad2/3-Runx1 cascade and chondrogenesis-related miRNAs. Mol Ther Nucleic Acids. 2020;22: 832-845. [10] DRIBAN JB, WARD RJ, EATON CB, et al. Meniscal extrusion or subchondral damage characterize incident accelerated osteoarthritis: data from the osteoarthritis initiative. Clin Anat. 2015;28(6):792-799. [11] MATADA MS, HOLI MS, RAMAN R, et al. Visualization of Cartilage from Knee Joint Magnetic Resonance Images and Quantitative Assessment to Study the Effect of Age, Gender and Body Mass Index (BMI) in Progressive Osteoarthritis (OA). Curr Med Imaging Rev. 2019;15(6): 565-572. [12] GOLDRING MB, GOLDRING SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010; 1192(1):230-237. [13] LOESER RF, GOLDRING SR, SCANZELLO CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6): 1697-1707. [14] PRIMORAC D, MOLNAR V, ROD E, et al. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020;11(8):854. [15] VINCENT KR, CONRAD BP, FREGLY BJ, et al. The pathophysiology of osteoarthritis: a mechanical perspective on the knee joint. PM R. 2012; 4(5):S3-S9. [16] BLEWIS ME, NUGENT-DERFUS GE, SCHMIDT TA, et al. A model of synovial fluid lubricant composition in normal and injured joints. Eur Cell Mater. 2007;13(1):26-39. [17] HUI AY, MCCARTY WJ, MASUDA K, et al. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4(1):15-37. [18] DU X, LIU ZY, TAO XX, et al. Research progress on the pathogenesis of knee osteoarthritis. Orthop Surg. 2023;15(9):2213-2224. [19] BELLUZZI E, EL HADI H, GRANZOTTO M, et al. Systemic and local adipose tissue in knee osteoarthritis. J Cell Physiol. 2017;232(8): 1971-1978. [20] NELSON FR. A background for the management of osteoarthritic knee pain. Pain Manag. 2014;4(6):427-436. [21] MUSHENKOVA NV, NIKIFOROV NG, SHAKHPAZYAN NK, et al. Phenotype diversity of macrophages in osteoarthritis: implications for development of macrophage modulating therapies. Int J Mol Sci. 2022;23(15):8381. [22] THAUNAT M, PIOGER C, CHATELLARD R, et al. The arcuate ligament revisited: role of the posterolateral structures in providing static stability in the knee joint. Knee Surg Sports Traumatol Arthrosc. 2014;22:2121-2127. [23] JUNG HJ, FISHER MB, WOO SL. Role of Biomechanics in the understanding of normal, injured and healing ligaments and tendons. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):9. [24] CHANG AH, LEE SJ, ZHAO H, et al. Impaired varus–valgus proprioception and neuromuscular stabilization in medial knee osteoarthritis. J Biomech. 2014;47(2):360-366. [25] GREIS PE, BARDANA DD, HOLMSTROM MC, et al. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3): 168-176. [26] BANY MUHAMMAD M, YEASIN M. Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs. Sci Rep. 2021;11(1):14348. [27] BOLINK SA, GRIMM B, HEYLIGERS IC. Patient-reported outcome measures versus inertial performance-based outcome measures: a prospective study in patients undergoing primary total knee arthroplasty. Knee. 2015;22(6):618-623. [28] FAVRE J, JOLLES BM. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016;1(10):368-374. [29] ASTEPHEN JL, DELUZIO KJ, CALDWELL GE, et al. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J Biomech. 2008;41(4):868-876. [30] COLLINS NJ, MISRA D, FELSON DT, et al. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken). 2011;63 Suppl 11(0 11):S208-S228. [31] LI X, ROEMER FW, CICUTTINI F, et al. Early Knee OA definition-what do we know at this stage? An Imaging perspective. Ther Adv Musculoskelet Dis. 2023;15:1759720X231158204. [32] BRAUN HJ, GOLD GE. Diagnosis of osteoarthritis: imaging. Bone. 2012; 51(2):278-288. [33] NACEY NC, GEESLIN MG, MILLER GW, et al. Magnetic resonance imaging of the knee: An overview and update of conventional and state of the art imaging. J Magn Reson Imaging. 2017;45(5):1257-1275. [34] HAYASHI D, ROEMER FW, JARRAYA M, et al. Imaging in osteoarthritis. Radiol Clin North Am. 2017;55(5):1085-1102. [35] PATRICK DL, BURKE LB, GWALTNEY CJ, et al. Content validity--establishing and reporting the evidence in newly developed patient-reported outcomes (PRO) instruments for medical product evaluation: ISPOR PRO good research practices task force report: part 1--eliciting concepts for a new PRO instrument. Value Health. 2011;14(8):967-977. [36] MCKAY J, FRANTZEN K, VERCRUYSSEN N, et al. Rehabilitation following regenerative medicine treatment for knee osteoarthritis-current concept review. J Clin Orthop Trauma. 2019;10(1):59-66. [37] CLEMENT ND, BARDGETT M, WEIR D, et al. What is the Minimum Clinically Important Difference for the WOMAC Index After TKA? Clin Orthop Relat Res. 2018;476(10):2005-2014. [38] LOHR KN, ZEBRACK BJ. Using patient-reported outcomes in clinical practice: challenges and opportunities. Qual Life Res. 2009;18(1):99-107. [39] BYTYQI D, SHABANI B, LUSTIG S, et al. Gait knee kinematic alterations in medial osteoarthritis: three dimensional assessment. Inter Orthop. 2014;38:1191-1198. [40] BAKER R. The history of gait analysis before the advent of modern computers. Gait Posture. 2007;26(3):331-342. [41] ZUK M, PEZOWICZ C. Kinematic Analysis of a Six-Degree-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model. Appl Bionics Biomech. 2015;2015:503713. [42] FARSHIDFAR SS, CADMAN J, NERI T, et al. Towards a validated musculoskeletal knee model to estimate tibiofemoral kinematics and ligament strains: comparison of different anterolateral augmentation procedures combined with isolated ACL reconstructions. Biomed Eng Online. 2023;22(1):31. [43] LI G, VAN DE VELDE SK, BINGHAM JT. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech. 2008;41(7):1616-1622. [44] ZHANG Y, YAO Z, WANG S, et al. Motion analysis of Chinese normal knees during gait based on a novel portable system. Gait Posture. 2015;41(3):763-768. [45] WANG S, ZENG X, HUANGFU L, et al. Validation of a portable marker-based motion analysis system. J Orthop Surg Res. 2021;16(1):425. [46] TARNIŢĂ D, PETCU AI, DUMITRU N. Influences of treadmill speed and incline angle on the kinematics of the normal, osteoarthritic and prosthetic human knee. Rom J Morphol Embryol. 2020;61(1):199-208. [47] COLLINS TD, GHOUSSAYNI SN, EWINS DJ, et al. A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait Posture. 2009;30(2):173-180. [48] SIMIC M, HARMER AR, AGALIOTIS M, et al. Clinical risk factors associated with radiographic osteoarthritis progression among people with knee pain: a longitudinal study. Arthritis Res Ther. 2021;23(1):160. [49] HUANG C, XU Z, SHEN Z, et al. DADP: Dynamic abnormality detection and progression for longitudinal knee magnetic resonance images from the Osteoarthritis Initiative. Med Image Anal. 2022;77:102343. [50] KLÖPFER-KRÄMER I, BRAND A, WACKERLE H, et al. Gait analysis - Available platforms for outcome assessment. Injury. 2020;51 Suppl 2:S90-S96. [51] ZENG X, YANG T, KONG L, et al. Changes in 6DOF knee kinematics during gait with decreasing gait speed. Gait Posture. 2022;91:52-58. [52] ZHENG N, DAI H, ZOU D, et al. Altered In Vivo Knee Kinematics and Lateral Compartment Contact Position During the Single-Leg Lunge After Medial Unicompartmental Knee Arthroplasty. Orthop J Sports Med. 2023;11(2):23259671221150958. [53] IKUTA F, YONETA K, MIYAJI T, et al. Knee kinematics of severe medial knee osteoarthritis showed tibial posterior translation and external rotation: a cross-sectional study. Aging Clin Exp Res. 2020;32(9):1767-1775. [54] LI JS, TSAI TY, FELSON DT, et al. Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait. PLoS One. 2017;12(3):e0174663. [55] ZHONG G, ZENG X, XIE Y, et al. Prevalence and dynamic characteristics of generalized joint hypermobility in college students. Gait Posture. 2021;84:254-259. [56] DEFRATE LE, PAPANNAGARI R, GILL TJ, et al. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240-1246. [57] YANG T, HUANG Y, ZHONG G, et al. 6DOF knee kinematic alterations due to increased load levels. Front Bioeng Biotechnol. 2022;10:927459. [58] HUANG W, LIN Z, ZENG X, et al. Kinematic characteristics of an osteotomy of the proximal aspect of the fibula during walking: a case report. JBJS Case Connect. 2017;7(3):e43. [59] 段德胜,陈开放,郭晓东,等. 腓骨近端截骨术后膝关节三维运动学特征研究[J]. 中华老年骨科与康复电子杂志,2017,3(3):162-166. [60] TAKEMAE T, OMORI G, NISHINO K, et al. Three-dimensional knee motion before and after high tibial osteotomy for medial knee osteoarthritis. J Orthop Sci. 2006;11(6):601-606. [61] VAN DER STRAATEN R, WESSELING M, JONKERS I, et al. Functional movement assessment by means of inertial sensor technology to discriminate between movement behaviour of healthy controls and persons with knee osteoarthritis. J Neuroeng Rehabil. 2020;17(1):65. [62] GUO L, LUO Y, ZHOU L, et al. Kinematic study of the overall unloading brace for the knee. Heliyon. 2023;9(2):e13116. [63] ZENG YM, YAN MN, LI HW, et al. Does mobile-bearing have better flexion and axial rotation than fixed-bearing in total knee arthroplasty? A randomised controlled study based on gait. J Orthop Translat. 2019;20:86-93. [64] 翟永喜, 叶劲, 陈艺, 等. 单髁与全膝关节置换术治疗膝内侧骨关节炎术后步态对比研究[J]. 中华关节外科杂志(电子版),2017, 11(1):9-16. [65] KOUR RYN, GUAN S, DOWSEY MM, et al. Kinematic function of knee implant designs across a range of daily activities. J Orthop Res. 2023;41(6):1217-1227. |
[1] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[2] | Chen Yixin, Lu Yan, Zhang Xuan, Chen Xiaoli, Tan Liangyuan, Xu Zhangjie, Chen Wanglong, Su Shaoting, Liang Jiyao, Zhou Honghai. Mechanism by which Tongan Decoction regulates synovial macrophage polarization in rats with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(26): 5621-5631. |
[3] | Liu Yantong, Wang Shixuan, Zhao Shuangli, Wei Wei, Wang Donghai, Jiang Zongkun, Liu Hongfei. Transcriptional profiling and experimental validation of acupotomy for knee osteoarthritis in rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(20): 4239-4248. |
[4] | Tang Xiran, Chen Weijian, Jiang Tao, Tan Xianyun, Liu Wengang . Types and contents of fatty acids and the risk of knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3724-3731. |
[5] | Liao Qing, Zeng Jing, Chen Jun, Yuan Lixia, Liu Gang. Moxibustion alleviates cartilage lesions in rats with knee osteoarthritis through regulating the circPan3/miR-667-5p/Ghrelin signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(12): 2475-2483. |
[6] | Shen Xuyu, Luo Chengnuo, Zhang Xiaoyun, Jiang Zhouying, Chai Yuan . Role and mechanism of alkaloid components of traditional Chinese medicine against knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2368-2376. |
[7] | Hu Xiaoshen, Li Huijing, Lyu Junling, Xiao Xianjun, Li Juan, Li Xiang, Liu Ling, Jin Rongjiang. Pathological changes in the total knee joint during spontaneous knee osteoarthritis in guinea pigs at different months of age [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2218-2224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||