[1] LIANG Y, SONG Y, WANG L, et al. Research progress on antibacterial activity of medical titanium alloy implant materials. Odontology. 2023; 111(4):813-829.
[2] LIU W, LIU SF, WANG LQ. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings. 2019;9(4):23.
[3] McMaster Arthroplasty Collaborative (MAC). Incidence and Predictors of Prosthetic Joint Infection Following Primary Total Knee Arthroplasty: A 15-Year Population-Based Cohort Study. J Arthroplasty. 2022;37(2):367-372.e1.
[4] NELSON SB, PINKNEY JA, CHEN AF, et al. Periprosthetic Joint Infection: Current Clinical Challenges. Clin Infect Dis. 2023;77(7):e34-e45.
[5] BHATTACHARJEE A, BANDYOPADHYAY A, BOSE S. Plasma sprayed fluoride and zinc doped hydroxyapatite coated titanium for load-bearing implants. Surf Coat Technol. 2022;440:128464.
[6] JAGADEESHANAYAKA N, AWASTHI S, JAMBAGI SC, et al. Bioactive surface modifications through thermally sprayed hydroxyapatite composite coatings: a review of selective reinforcements. Biomater Sci. 2022;10(10):2484-2523.
[7] HUSSAIN S, SHAH ZA, SABIRUDDIN K, et al. Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique. J Mech Behav Biomed Mater. 2023;137:105550.
[8] DING SJ, CHU YH, CHEN PT. Mechanical Biocompatibility, Osteogenic Activity, and Antibacterial Efficacy of Calcium Silicate-Zirconia Biocomposites. ACS Omega. 2021;6(10):7106-7118.
[9] SKALNY AV, ASCHNER M, SILINA EV, et al. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules. 2023;13(6):1006.
[10] WANG B, GUO H, GENG T, et al. The effect of strontium ranelate on titanium particle-induced periprosthetic osteolysis regulated by WNT/β-catenin signaling in vivo and in vitro. Biosci Rep. 2021;41(1): BSR20203003.
[11] CAUDRILLIER A, HURTEL-LEMAIRE AS, WATTEL A, et al. Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol. 2010;78(4):569-576.
[12] DOLLWET HH, SORENSON JR. Roles of copper in bone maintenance and healing. Biol Trace Elem Res. 1988;18:39-48.
[13] DALECKI AG, HAEILI M, SHAH S, et al. Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrob Agents Chemother. 2015;59(8):4835-4844.
[14] 王嘉旎,陈俊宇.金属离子促血管生成机制及在骨组织工程中的应用[J].中国组织工程研究,2024,28(5):804-812.
[15] LI Y, LUO W, LIU Y, et al. Copper-containing titanium alloys promote the coupling of osteogenesis and angiogenesis by releasing copper ions. Biochem Biophys Res Commun. 2023;681:157-164.
[16] GUPTA NK, SOMANI N, PRAKASH C, et al. Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials (Basel). 2021;14(9):2292.
[17] LIU W, YANG D, WEI X, et al. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J Biomater Appl. 2020;35(4-5):544-552.
[18] VAN JONBERGEN HP, SPRUIT M, ANDERSON PG, et al. Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J. 2005;5(6):645-649; discussion 649.
[19] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54.
[20] ZHAI Y, ZHANG H, WANG JC, et al. Research progress of metal-based additive manufacturing in medical implants . Rev Adv Mater Sci. 2023; 62(1):29.
[21] RAPHEL J, HOLODNIY M, GOODMAN SB, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301-314.
[22] WU C, RAMASWAMY Y, LIU X, et al. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. J R Soc Interface. 2009;6(31):159-168.
[23] CAO J, YANG S, LIAO Y, et al. Evaluation of polyetheretherketone composites modified by calcium silicate and carbon nanotubes for bone regeneration: mechanical properties, biomineralization and induction of osteoblasts. Front Bioeng Biotechnol. 2023;11: 1271140.
[24] BRENNAN TC, RYBCHYN MS, GREEN W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291-1300.
[25] YAN J, XIA D, ZHOU W, et al. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater. 2020;115:220-234.
[26] LIANG T, WANG YP, ZENG LL, et al. Copper-doped 3D porous coating developed on Ti-6Al-4V alloys and its in vitro long-term antibacterial ability. Appl Surf Sci. 2020;509:144717.
[27] ZHANG D, LIU Y, LIU ZG, et al. Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review. Coatings. 2020;10(9):828-828.
[28] BENETTI G, CAVALIERE E, BRESCIA R, et al. Tailored Ag-Cu-Mg multielemental nanoparticles for wide-spectrum antibacterial coating. Nanoscale. 2019;11(4):1626-1635.
[29] 李兴平,肖东琴, 赵桥,等.钛表面载铜抗菌功能膜的制备及性能[J].中国组织工程研究,2021,25(4):553-557.
[30] MOHAMMADI H, SEPANTAFAR M. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant. Iran Biomed J. 2016;20(4):189-200.
[31] WANG S, LI R, LI D, et al. Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. J Mater Chem B. 2018;6(20):3254-3261.
[32] LI S, HE Y, LI J, et al. Titanium scaffold loaded with strontium and copper double-doped hydroxyapatite can inhibit bacterial growth and enhance osteogenesis. J Biomater Appl. 2022;37(2):195-203.
[33] ZHENG K, DAI X, LU M, et al. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids Surf B Biointerfaces. 2017;150:159-167.
[34] LI Y, LU Y, QIU B, et al. Copper-containing titanium alloys promote angiogenesis in irradiated bone through releasing copper ions and regulating immune microenvironment. Biomater Adv. 2022;139:213010.
[35] WU Y, SHI X, WANG J, et al. A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity. Front Bioeng Biotechnol. 2023;11:1142264.
[36] WENG L, BODA SK, TEUSINK MJ, et al. Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity. ACS Appl Mater Interfaces. 2017;9(29):24484-24496.
[37] DAHL SL, RUCKER RB, NIKLASON LE. Effects of copper and cross-linking on the extracellular matrix of tissue-engineered arteries. Cell Transplant. 2005;14(10):861-868.
[38] RODRÍGUEZ JP, RÍOS S, GONZÁLEZ M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002;85(1):92-100.
[39] MEDEIROS DM. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp Biol Med (Maywood). 2016;241(12):1316-1322.
[40] RATH SN, BRANDL A, HILLER D, et al. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One. 2014;9(12):e113319.
[41] KALAIVANI S, SINGH RK, GANESAN V, et al. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J Mater Chem B. 2014;2(7):846-858.
[42] YU S, JIANG B, JIA C, et al. Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2020;19(1):10.
[43] REN Y, QIN X, BARBECK M, et al. Mussel-Inspired Carboxymethyl Chitosan Hydrogel Coating of Titanium Alloy with Antibacterial and Bioactive Properties. Materials (Basel). 2021;14(22):6901.
[44] MINKIEWICZ-ZOCHNIAK A, JARZYNKA S, IWAŃSKA A, et al. Biofilm Formation on Dental Implant Biomaterials by Staphylococcus aureus Strains Isolated from Patients with Cystic Fibrosis. Materials (Basel). 2021;14(8):2030.
[45] GEORGAKOPOULOS-SOARES I, PAPAZOGLOU EL, KARMIRIS-OBRATAŃSKI P, et al. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf B Biointerfaces. 2023 Nov;231:113584.
[46] LEE DH, MAI HN, THANT PP, et al. Effects of different surface finishing protocols for zirconia on surface roughness and bacterial biofilm formation. J Adv Prosthodont. 2019;11(1):41-47.
[47] MAHMOUDI P, AKBARPOUR MR, LAKEH HB, et al. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio. 2022;17:100447.
[48] SHEN Q, QI Y, KONG Y, et al. Advances in Copper-Based Biomaterials With Antibacterial and Osteogenic Properties for Bone Tissue Engineering. Front Bioeng Biotechnol. 2022;9:795425. |