Chinese Journal of Tissue Engineering Research
Previous Articles Next Articles
Yuan Zhi-jun, Li Xiao-gang
Revised:2013-04-22
Online:2013-11-05
Published:2013-11-05
About author:Yuan Zhi-jun★, Studying for master’s degree, Physician, Department of Neurology, Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan Province, China
wzj694397641@qq.com
CLC Number:
Yuan Zhi-jun, Li Xiao-gang. Stem cell therapy for ischemic stroke[J]. Chinese Journal of Tissue Engineering Research, doi: 10.3969/j.issn.2095-4344.2013.45.020.
2.1 干细胞的定义 干细胞是一类种类多样,具有自我复制更新能力、多向分化潜能和高度增殖潜能的细胞。神经干细胞为干细胞的一种类型。Reynolds、Mckay和Gage等[12-15]从成年鼠纹状体分离出能在体外不断分裂增殖,具有多种分化潜能的细胞群,并提出了神经干细胞的概念,神经干细胞是指具有分化为神经元、星形胶质细胞和少突胶质细胞能力的细胞,其具有高度增殖潜能和多向分化潜能。因此,可以推测神经干细胞用于移植治疗缺血性脑卒中可能比其他类型干细胞效果更佳。此推测需要大量的实验来证明。 2.2 干细胞的类型 2.2.1 骨髓源性细胞 骨髓源性细胞是最广泛的成体干细胞。包括:造血干细胞、骨髓间充质干细胞、多能成体祖细胞等多种干细胞。虽然骨髓间充质干细胞经实验证明具有较多优点,如易获得性,多潜能性,可自体移植[15]。但是骨髓间充质干细胞治疗脑卒中也存在很多问题,如移植后的存活、安全性、可塑性都还需要更进一步的研究。 骨髓间充质干细胞:骨髓间充质干细胞诱导血管生成被认为具有重要的神经功能恢复作用,其机制并不完全清楚。Bao等[16]研究表明,骨髓间充质干细胞诱导血管生成可提高脑组织灌注,从而给脑卒中后的缺血区提供了一个合适的微环境,反过来加速了内源性的神经发生和促进缺损脑细胞的功能恢复。Wei等[17]研究表明骨髓间充质干细胞在促进内源性神经发生,保护新生的神经细胞,促进缺血性脑卒中大鼠的功能恢复具有极大地作用。 成体神经干细胞和祖细胞:Kameda等[18]研究发现成体神经干细胞和祖细胞是重要的自体移植工具,因为它们可以分泌因子,保护缺血区的脑细胞。成人神经干/祖细胞转基因可分泌更多的胶质细胞源性神经营养因子,其可以防止大鼠缺血进一步恶化。这些发现表明,神经干/祖细胞-胶质细胞源性神经营养因子在治疗缺血性脑卒中是有效的。Oki等[19]的研究数据也表明自体移植人类体细胞促进缺血性卒中后的功能恢复是一个安全和有效的方法,而新移植的人类体细胞可以用来替代受伤的大脑细胞。 2.2.2 人胚胎干细胞 人类胎儿神经干/祖细胞:是最初来源于人类胎儿前脑组织,它的增长需要一个较长的时间(超过24周),然后还需要约4 d的培养才能移植到大鼠的损伤区域,而移植后4周才能评价感觉、运动和认知功能改善情况,所以移植的过程比较漫长。选择性神经元死亡的主要区域大约8%有的移植神经干/祖细胞幸存下来,与抗体结合,如神经核抗体、微管相关蛋白、神经胶质纤维酸性蛋白的肌原纤维、抗2’3’环核苷酸磷酸二酯酶3’。总之,人类神经干/祖细胞明显改善缺血后神经功能主要原因是促进移植的神经干细胞迁移到梗死部位,并分化为成熟的神经元,并形成突触的神经回路。以上都是Ishibashi等[20]研究结果,表明在体外扩增的神经干细胞是治疗缺血性卒中的一个潜在干细胞来源。 人类胎儿纹状体的神经干细胞:被视为潜在的、安全的、有效的,具有极强的神经再生能力的干细胞之一。Darsalia等[21- 22]研究表明人类胎儿纹状体皮质可再生,其用于神经干细胞的移植,可以而来自人类胎儿纹状体的神经干细胞,可反过来刺激纹状体神经发生,从着床部位迁移,分化为成熟的神经元。Kobayashi等[23]研究表明在缺血后的4周内注入胶质细胞源性神经营养因子,可促进脑卒中后纹状体的神经发生。Zhang等[24]研究也表明发生缺血性脑卒中的成年老鼠SVZ的神经干细胞/祖细胞有助于诱导增加神经发生。 2.2.3 胚胎干细胞 胚胎干细胞来源于囊胚或早期桑椹胚的外胚层细胞,目前常用的胚胎干细胞主要从猪胚胎期的外侧节隆起经培养而获得。其可以作为治疗各种神经系统疾病一个潜在的、可移植的、容易获取的细胞来源。 2.2.4 内皮祖细胞 Fan等[25]证实内皮祖细胞可保护缺血性脑卒中的病灶细胞。促进缺血区血管与神经的修复,改善神经的缺损功能。有实验表明内皮祖细胞能通过分泌多种与凋亡、血管生长及神经再生有关的因子,从而减轻缺血性神经损伤[26]。 2.2.5 诱导多能干细胞 Wemig和Kawai等[27-28]报道小鼠成纤维细胞产生的诱导多能干细胞在体外能有效分化为多种神经细胞。患者的任何部位基本上都存在诱导多能干细胞,具其有高繁殖能力和多潜能分化成各种类型细胞的能力,这表明诱导多能干细胞移植的来源之一。诱导多能干细胞可形成畸胎瘤,但可以为缺血性脑细胞提供大量的新生神经细胞和一些成熟的神经元。因此表明,对于缺血性脑损伤的治疗,如果肿瘤发生可以适当控制[29],诱导多能干细胞是一个有前途的潜在神经干细胞来源。 2.2.6 人类的成人牙髓干细胞 源自第3磨牙,是多能的,有能力分化成神经元,在体外诱导条件下和移植后都能到达缺血病灶。Leong等[30]研究中证实在啮齿动物模型局灶性脑缺血后24 h内向病灶区移植人类牙髓干细胞,在处理4周后可引前肢感觉运动功能显著改善。牙髓干细胞治疗脑缺血,促进功能恢复的主导作用机制,不太可能是由于神经替代;更可能是通过牙髓干细胞-依赖的旁分泌作用介导的。此研究为今后使用人类牙髓干细胞治疗改善脑卒中患者的功能缺损提供了一定理论基础。 2.3 干细胞治疗缺血性脑损伤的机制 干细胞治疗缺血性脑损伤的目的不仅在于促使移植的细胞存活,而且需要使新生的神经元与现存的神经网络形成连接。通过移植,干细胞能正在到达缺血区,并发生有效修复再生作用的数量很少,不足以替代缺血损伤的神经组织和重建神经联系[31]。大多数学者认为神经干细胞修复损伤的机制可能是细胞替代、免疫调节、神经保护和神经营养的相互作用[32]。 主要包括:释放神经递质作用于突触后膜产生生理调节;释放神经营养因子产生支持与营养缺血区神经组织;重新形成局部的神经突触联系;细胞分化及整合;改善局部氧分压;抑制胶质细胞活性,并阻止其逆行变性等[33]。Kempermann等[34]实验发现成年哺乳动物神经元发生的各个方面受遗传背景的影响。有研究表明缺血性脑卒中后,有一部分缺血脑有神经再生现象[35]。缺血可启动神经保护过程,而神经发生是一种类似过程[36],可受多种因素影响。认识神经发生的影响因素并加以调控,保护缺血的神经细胞和组织,可为后期的修复创造机会和条件。Wakabayashi等[37]实验表明B10的神经保护作用可能与分泌胰岛素样生长因子、诱导血管内皮生长因子、成纤维细胞生长因子、胶质细胞源性神经营养因子和脑源性神经营养因子的表达相关。Kang等[38]实验表明神经干细胞能促进大鼠的全脑缺血神经功能的恢复,外源性神经干细胞能通过多种机制诱导内源性神经修复,两者相互作用。Borlongan等[39]和Polgar等[40]的研究说明人骨髓间充质干细胞对脑血流灌注和血脑屏障通透性有一定的影响。Li等[41]应用人骨髓间充质干细胞治疗大鼠脑缺血,结果显示,人骨髓间充质干细胞治疗卒中可以促进与大鼠神经功能恢复、增强及轴突重塑相关的少突胶质细胞和星形细胞的反应性。 2.3.1 组织生物学机制 ①召集内源性前体细胞:有研究证明,脑卒中发生后内源性神经再生作用增强[42]。②减轻炎性反应:一个引起极大兴趣的潜在修复机制是移植细胞可以减轻脑卒中引发的炎性与免疫反应。静脉注射人脐血可以减少浸润到脑组织中的白细胞,但仍不知道这是对炎性反应的直接作用,还是减小坏死区体积的继发作用。此外,异种移植以抑制免疫反应。有报道称骨髓间充质干细胞移植可以直接抑制T细胞活性[43]。③诱导神经重塑及诱导心血管形成:有报道称静脉注入人骨髓间充质细胞后在半暗带突触素表达增加[44]。骨髓间充质细胞和神经干细胞移植均可发生移植细胞诱导血管形成。人类骨髓间充质细胞在缺血带通过增加内源性血管生成因子:血管内皮生长因子的水平促进血管形成。④分泌营养因子——减少宿主细胞死亡:Ben-Hur[45]有一个新理念认为移植干细胞治疗缺血性卒中的机制不仅是通过细胞替代受损组织,还通过营养和保护作用以及免疫调节效应来降低细胞组织的损伤。实验研究显示,多种细胞种类都表现出这种作用。它们的共同特点是都分泌营养性因子,如血管内皮生长因子、成纤维细胞生长因子、胶质细胞源性神经营养因子和脑源性神经营养因子,这些因子很可能对于神经保护作用机制起到重要作用。⑤修复宿主神经通路:使用神经千细胞治疗神经疾病的效果中最诱人的机制当数干细胞替代受损组织,修复神经通路,产生长期疗效。但是,对于这种机制的证据却是非常有限的。 2.3.2 分子生物学机制 从最原始的干细胞到成熟细胞要经历全能干细胞、多能干细胞、祖细胞、定向祖细胞和成熟细胞5个阶段[46],在此过程中受多种细胞因子、神经营养因子调控。因此干细胞移植可能有以下分子生物学机制:①促进神经生长。研究表明P13K/Akt信号通路在调节神经生长、促进康复的治疗中起到重要作用。②增强血管生成。Chen等[31]将正常脑及缺血脑的提取物与骨髓间充质干细胞共培养,发现与缺血脑组织共培养的细胞脑源性神经营养因子、神经生长因子、血管内皮生长因子、肝细胞生长因子等神经营养因子和血管生长因子有明显的升高。作者推测移植的骨髓基质细胞可以增强卒中后脑血管的生成,从而有利于卒中脑的功能恢复。③神经生长和血管生成相互偶联[47]:脑卒中诱导的神经生长和血管生成是联系在一起的。④各种营养因子对于脑卒中的修复作用和与脑组织的相互作用关系:缺血后的神经再生是一种对损伤脑组织的代偿机制,在此过程中,缺血组织分泌多种因子调控神经干细胞的增殖、分化和迁徙。脑卒中发生后,部分神经干细胞在分裂素和生长因子的作用下增殖,另外一些在趋化因子诱导下脱离分裂环境,向损伤部位趋化,同时在促分化因子作用下分化为神经祖细胞[48]。而最终的结果取决于脑缺血发生后这些因子的时间和空间表达。Andsberg等[49]报道,携带神经生长因子的神经干细胞移植入大鼠的海马,1周后制作脑缺血模型,其梗死面积和坏死神经元数目明显少于不携带神经生长因子神经干细胞的移植。Toda等[50]将神经干细胞植入缺血的大鼠海马纹状体CA1区,发现1%-3%的移植细胞长期存活,其中3%-9%的细胞分化为神经元,这些存活的神经元改善了大鼠的空间认知功能。移植细胞可以在受损部位存活,并可以显著改善大鼠大脑中动脉闭塞后的缺血性损伤。神经干细胞移植治疗可以减少缺血性脑损伤的面积和有助于损伤后的修复。此外,他们发现炎症相关的分子如Cox-2和白细胞介素1β,神经干细胞移植治疗缺血性卒中可以抑制炎症分子蛋白水平的表达。他们还发现蛋白质水平的热休克蛋白27作为一种保护性蛋白可以对抗细胞凋亡。研究结果表明,神经干细胞移植可以降低热休克蛋白27的水平和使半胱天冬酶3的活性降低[51],揭示神经干细胞移植治疗缺血性卒中的另一种潜在可能:恢复损害区域和提供新发生的神经细胞。 2.4 干细胞移植的方法及时间限制 移植干细胞的方法还可以分为内源性和外源性。内源性移植方法有赵振强、刘喆等[52-53]研究发现电针促进干细胞增殖的作用可能是电针治疗脑缺血的机制之一。外源性移植方式有:细胞悬浮液立体定向注射,胶原基质包埋移植,聚羟基乙酸、聚乳酸等吸附移植,细胞悬液静滴,脑室内或腰穿,颈动脉内细胞悬液注射法[54-55]。Chu等[56]的数据表明,静脉注射移植人类神经干细胞可以迁移和分化到老鼠大脑缺血灶,促进功能恢复。步星耀等[57]取自体髂骨骨髓间充质干细胞,采用直接移植、经侧脑室注入移植、经脑脊液和静脉注入移植对25例缺血性脑血管病患者进行治疗,治疗后脑功能缺损均有改善,且未见明显不良反应。Jin等[58]研究表明,比较立体定向直接注入纹状体、注射人脑室和静滴3种移植方法,发现到达缺血区神经干细胞数量经静脉移植的少于前两者。且有研究表明静脉移植避免损伤正常脑组织,且可以通过反复多次移植来弥补神经干细胞的不足。在动物模型的研究表明,神经干/祖细胞治疗缺血性脑卒中,外源性的神经干细胞不仅可以改善缺损的功能,还可以取代死亡的神经元细胞,营养神经,参与炎症的调节,促进血管生成和神经保护[59]。内源性神经干/祖细胞在缺血区域可以产生新的神经元,也成为潜在的治疗靶点。它们相互作用于缺血区域,可取得更好的效果。基础的研究者和临床医生需要开发安全、可再生的神经干/祖细胞来源,使其在相关的卒中动物模型中尽可能地恢复缺损的脑功能。 除此之外,干细胞治疗缺血性脑损伤受“时间窗”限制。Dunyue等发现在脑卒中后24 h内神经干细胞移植的存活率为68.8%,脑卒中后10-14 d 移植神经干细胞的存活率为80%,故作者认为急性期的炎症反应影响了移植的神经干细胞的存活率,而植入细胞所处的微环境可随时间的延长而有所改善。De Vasconcelos Dos Santos等[60]分别采用骨髓间充质干细胞和骨髓单核细胞对皮质缺血大鼠模型进行治疗,发现缺血后1-7 d有明显疗效,超过7 d则疗效明显降低,其中1 d组疗效最佳。尽管干细胞移植在治疗病某些疾病方面取得可喜进展,但应用人的神经元细胞移植治疗脑卒中的二期临床研究显示,神经元细胞移植安全、可行,可是患者并未获得更好的结果,可能是缺血性脑卒中较帕金森病更为复杂,涉及更多的细胞类型和更为复杂的脑的血液循环和微环境[61]。"
| [1] Zheng GZ,Michael C.Neuro restorative therapies for stroke:underlying mechanisms andtranslation to the clinic.Lancet Neural. 2009;8:491-500. [2] Hacke W,Kaste M,Bluhmki E,et al.Thrombolysis with aheplase 3 to 4.5 hours after acute ischemic stroke.N Engl J Med. 2008;359:1317-1329. [3] Hasegawa N, Kawaguchi H, Hirachi A, et al. Behavior of transplanted bone marrow-derived messenchymal stem cells im periodontal defects. J Periodontol. 2006;77(6): 1003-1007. [4] Yazawa T, Mizutani T. Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology. 2006;147(9):4104- 4111. [5] Carstanjen B, Desbois C, Hekmati M, et al.Successful engraftment of cultured autologous messenchymal stem cells in a surgically repaired soft palate defect in an adult horse. Can J Vet Res. 2006;70(2):143-147 [6] Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology. 2004; 24(3):159-171. [7] Sensebé L, Krampera M, Schrezenmeier H, et al. Mesenchymal stem cells for clinical application. Vox Sang. 2010;98: 93-107. [8] Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemiè brain of rats. Exp Neurol. 2002;174:11-20. [9] Abrahams JM,Gokhan S,Flamm ES, et al. De novo neurogenesis and acute stroke: are exogenous stem cells really necessary? Neurosurgery. 2004;54(1):150-156. [10] Hadani M, Freeman T. Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats. J Neurotrauma. 1992;9(2): 107-112. [11] Grabowski M, Brundin P, Johansson BB,et al. Fetal neocortical grafts implanted in adult hypertensive rats with cortical cells. Neuro Trauma. 1992;116(2):105-121. [12] Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated ceils of the adult mammalian central neurons system. Science. 1992;255(5052):1707-1710. [13] Mckay R. Stem cells in the central nervous system. Science. 1997;276(5309):66-71. [14] Gage FH. Mammalian neural stem cells. Science. 2000; 287(5457):1433-1488. [15] Bang OY,Lee JS,Lee PH,et al. Autologous mesenchymal stemcell transplantation in stroke patients. Ann Neurol. 2005;57:874-882. [16] Bao X, Feng M.Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87-98. [17] Wei J,Bao X . Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011 ;1367:103-113. [18] Kameda M, Shingo T. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci. 2007 ;26(6):1462-1478. [19] Oki K, Tatarishvili J. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cell. 2012;30(6):1120-1133. [20] Ishibashi S, Sakaguchi M, Mizusawa H. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res. 2004;78(2):215-223. [21] Darsalia V, Kallur T, Kokaia Z,et al. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci. 2007;26(3):605-614. [22] Darsalia V, Allison SJ, Cusulin C, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab. 2011;31(1):235-242. [23] Kobayashi T, Ahlenius H, Thored P, et al.Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke. 2006;37(9): 2361-2367. [24] Zhang R, Zhang Z, Wang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004;24(4):441-448. [25] Fan Y,Sben F,Frcnzel T,et al. Endothelial progenitor Cen transplantation improves long-term stroke outcomein mice. Ann Neuroi. 2010;67(4):488-497. [26] Moubarik C, Guillet B.Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011;7(1):208-220. [27] Wemig M,Zhao JP,Pruszak J,et al.Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson disease. Proe Nail Acud Sci USA. 2008;105(15):5856-5861. [28] Kawai H,Yamashita T,Ohm Y,et al.Tridernud tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain.J Cereb Blood Flow Metab. 2010;30(8):1487-1493. [29] Abe K, Yamashita T, Kawai H, et al.iPS cell transplantation for ischemic brain Rinsho Shinkeigaku. 2012;52(11):1143- 1146. [30] Leong WK, Henshall TL. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3): 177-187. [31] Chen J, Sanberg PR,Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats.Stroke. 2001;32(11):2682-2688. [32] Liu J, Mao B. Treatment of brain ischemic stroke by co-transplantation of neural stem cells and endothelial progenitor cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007;21(2):204-208. [33] Nishino H. Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res. 2000; 127:461-476. [34] Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 1998;18: 3206-3212. [35] Kumiashi K, Uchida K, Miyazaki H, et al. Acetylsalicylic acid reduces ischemia-induced proliferation of dentate cells in gerbils. Neuroreport. 2001;12(5): 915-917. [36] Benraiss A, Chmielnicki E, Lerner K, et al. Adenoviral brain-derived neurotrophic factor induce both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci. 2001;21: 6718-6731. [37] Wakabayashi K,Nagai A, Sheikh AM, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model.J Neurosci Res. 2010;8s(5):1017-1025. [38] Kang HC, Kim JY. Behavioral improvement after transplantation of neural precursors derived from Embryonic stem cells into the globally ischemic brain of adolescent rats. Brain Dev. 2010;32(8):658-668. [39] Borlongan CV, Lind JG, Dillon-Carter O, et al. Intracerebral enografts of mouse bone marrow cells in adult rats facilitate cerebral blood flow and blood-brain barrier. Brain Res. 2004; 1009:26-33. [40] Polgar S, Morris ME, Reilly S, et al. Reconstructive neurosurgery for Parkinsons disease:a systematic review and preliminary meta-analysis, Brain Res Bull. 2003;6:1-24. [41] Li Y,McIntosh K , Chen JL, et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol. 2006; 198:313-325. [42] Bliss T,Guman R,Dandi M,et al.Cell transplantation therapy for stroke.Stroke. 2007;38(part2):817-826. [43] Vendrame M,Gemma C ,de Mesquita D,et al.Antiinflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14:595-604. [44] Shen LH,Li Y,Chen J,et al.Intracarotid transplantation of bone marrow stromal cells increases axonmyelin remodeling after stroke.Neuroscience. 2006;137:393-399. [45] Ben-Hur T. Human embryonic stem cells for neuronal repair. Isr Med Assoc J. 2006;8(2):122-126. [46] Gage FH.Mammalian neural stem cells.Sciences. 2000;287 (5457):1433-1438. [47] Kalluri HS, Dempsey RJ. Growth factors, stem cells, and stroke. Neurosurg Focus. 2008;24(3-4):E14. [48] Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8(5):491-500. [49] Andsberg G,Kokaia Z,Bjorklund A,et al. Amelioration of ischaemia induced neuronal death in the rat striatum by NGF secreting neural stem cells. Eur J Neurosci. 1998;10: 2026-2036. [50] Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett. 2001;316:9-12. [51] Shen CC, Lin CH, Yang YC, et al. Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia. Curr Neurovasc Res. 2010;7(3):167-179. [52] 刘喆,赖新生.电针对局灶性脑缺血成年大鼠内源性神经干细胞增殖的影响[J].中国康复医学杂志,2007,22(3):218-224. [53] 赵振强,罗勇.电针对大鼠局灶脑缺血/再灌注后神经上皮干细胞蛋白表达的影响[J].中国中西医结合杂志, 2006,26(S1):20-24. [54] Jin K,Sun Y,Xie L,et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or in travenous transplantation in the rat. Neurobiol Dis. 2005;18(2):366-374. [55] Chu K, Kim M,Jeong SW, et al.Human neural stem cells can migrate,differentiate,and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett. 2003;343(2):129-133. [56] Chu K, Kim M, Park KI, et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res. 2004;1016(2): 145-153. [57] 步星耀,黄志起,张永福.骨髓基质细胞的生物学特性及应用研究[J].实用诊断与治疗杂志, 2004,18(1):35-38. [58] Jin K,Sun Y,Xie L,et al. Comparison of isehemia-direeted migration of neural precursor cells after intraatriatal, intraventricular.or intravenous in the rat.Neurobiol Dis. 2005;18:366-374. [59] Kokaia Z, Lindvall O. Stem cell repair of striatal ischemia. Prog Brain Res. 2012;201:35-53. [60] De Vasconcelos Dos Santos A, da Coata Reis J,Diaz Paredes B,et al. Therapeutic window for treatment of cortical ischemia with bone B.derived cells in rats.Brain Res. 2010;1306: 149-158. [61] Erceg S,Ronaghi M,Oria M,et al.Transplanted oli Godendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transaction .Stem Cells. 2012;28(9): 1541-1549. |
| [1] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(在线): 3-. |
| [2] | Chen Jinsong, Wang Zhonghan, Chang Fei, Liu He. Tissue engineering methods for repair of articular cartilage defect under special conditions [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(8): 1272-1279. |
| [3] | Liu Chundong, Shen Xiaoqing, Zhang Yanli, Zhang Xiaogen, Wu Buling. Effects of strontium-modified titanium surfaces on adhesion, migration and proliferation of bone marrow mesenchymal stem cells and expression of bone formation-related genes [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1009-1015. |
| [4] | Lin Ming, Pan Jinyong, Zhang Huirong. Knockout of NIPBL gene down-regulates the abilities of proliferation and osteogenic differentiation in mouse bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1002-1008. |
| [5] | Zhang Wen, Lei Kun, Gao Lei, Li Kuanxin. Neuronal differentiation of rat bone marrow mesenchymal stem cells via lentivirus-mediated bone morphogenetic protein 7 transfection [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 985-990. |
| [6] | Wu Zhifeng, Luo Min. Biomechanical analysis of chemical acellular nerve allograft combined with bone marrow mesenchymal stem cell transplantation for repairing sciatic nerve injury [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 991-995. |
| [7] | Huang Yongming, Huang Qiming, Liu Yanjie, Wang Jun, Cao Zhenwu, Tian Zhenjiang, Chen Bojian, Mai Xiujun, Feng Enhui. Proliferation and apoptosis of chondrocytes co-cultured with TDP43 lentivirus transfected-human umbilical cord mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1016-1022. |
| [8] | Qin Xinyu, Zhang Yan, Zhang Ningkun, Gao Lianru, Cheng Tao, Wang Ze, Tong Shanshan, Chen Yu. Elabela promotes differentiation of Wharton’s jelly-derived mesenchymal stem cells into cardiomyocyte-like cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1046-1051. |
| [9] | Liu Mengting, Rao Wei, Han Bing, Xiao Cuihong, Wu Dongcheng. Immunomodulatory characteristics of human umbilical cord mesenchymal stem cells in vitro [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1063-1068. |
| [10] |
Cen Yanhui, Xia Meng, Jia Wei, Luo Weisheng, Lin Jiang, Chen Songlin, Chen Wei, Liu Peng, Li Mingxing, Li Jingyun, Li Manli, Ai Dingding, Jiang Yunxia.
Baicalein inhibits the biological behavior of hepatocellular
carcinoma stem cells by downregulation of Decoy receptor 3 expression |
| [11] | Zhang Peigen, Heng Xiaolai, Xie Di, Wang Jin, Ma Jinglin, Kang Xuewen. Electrical stimulation combined with neurotrophin 3 promotes proliferation and differentiation of endogenous neural stem cells after spinal cord injury in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1076-1082. |
| [12] | Huang Cheng, Liu Yuanbing, Dai Yongping, Wang Liangliang, Cui Yihua, Yang Jiandong. Transplantation of bone marrow mesenchymal stem cells overexpressing glial cell line derived neurotrophic factor gene for spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1037-1045. |
| [13] | Han Bo, Yang Zhe, Li Jing, Zhang Mingchang . Regulation of limbal stem cells via Wnt signaling in the treatment of limbal stem cell deficiency [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1057-1062. |
| [14] | Li Jia, Tang Ying, Zhu Qi, Zhang Yanping, Zhou Peigang, Gu Yongchun. Transplantation of human stem cells from the apical papilla for treating dextran sulfate sodium-induced experimental colitis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1069-1075. |
| [15] | Zhang Shengmin, Liu Chao. Research progress in osteogenic differentiation of adipose-derived stem cells induced by bioscaffold materials [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(7): 1107-1116. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||