Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (6): 1144-1151.doi: 10.12307/2025.300
Previous Articles Next Articles
Li Yueyao1, Zhang Min2, Yang Jiaju2
Received:
2024-01-29
Accepted:
2024-03-06
Online:
2025-02-28
Published:
2024-06-20
Contact:
Zhang Min, MD, Chief physician, Second Hospital of Shanxi University, Taiyuan 030001, Shanxi Province, China
About author:
Li Yueyao, Master candidate, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi Province, China
Supported by:
CLC Number:
Li Yueyao, Zhang Min, Yang Jiaju. Cistanoside A mediates p38/MAPK pathway to inhibit osteoclast activity [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1144-1151.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 肉苁蓉苷A抑制RANKL诱导的破骨细胞分化 TRAP染色的结果显示,与对照组相比, 肉苁蓉苷A浓度为5,10,20,40,80,160 μmol/L时的破骨细胞数量明显减少,且肉苁蓉苷A在浓度为160 μmol/L时对破骨细胞生成的抑制作用最强(图1A,B)。CCK-8细胞毒性实验结果表明,在160 μmol/L浓度以下的肉苁蓉苷A对骨髓巨噬细胞无毒性作用(图1C)。 2.2 肉苁蓉苷A抑制破骨细胞表面肌动蛋白环的形成和破骨细胞骨吸收功能 见图2。鬼笔环肽和DAPI荧光染色结果显示,与阳性对照组相比,肉苁蓉苷A低、高剂量组破骨细胞肌动蛋白环面积明显减少,且肉苁蓉苷A高剂量组破骨细胞肌动蛋白环面积小于肉苁蓉苷A低剂量组(图2A,C)。 骨磨片甲苯胺蓝染色结果显示,与阳性对照组相比,肉苁蓉苷A低、高剂量组骨磨片上的骨陷窝面积均显著减小,且肉苁蓉苷A高剂量组的骨陷窝面积小于肉苁蓉苷A低剂量组(图2B,D)。"
[1] SONG J, ZHAO J, LIU T, et al.Prevalence and Risk Factors of Osteoporosis in a Chinese Population: A Cross-Sectional Study in Xi’an, Shaanxi Province, China. Med Sci Monit. 2023;29:e942346. [2] BARTELT A, BEHLER-JANBECK F, BEIL F, et al.Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF-RANKL signaling. Bone Res. 2018;26:6:4. [3] JOHNELL O, KANIS JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006; 17(12):1726-1733. [4] TU KN, LIE JD, WAN CKV, et al. Osteoporosis: A Review of Treatment Options.P T. 2018;43(2):92-104. [5] ZUR Y, ROSENFELD L, KESHELMAN CA, et al. A dual-specific macrophage colony-stimulating factor antagonist of c-FMS and αvβ3 integrin for osteoporosis therapy. PLoS Biol. 2018;16(8):e2002979. [6] ARAI F, MIYAMOTO T, OHNEDA O, et al.Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190(12):1741-1754. [7] JEEVARATNAM K, SALVAGE SC, LI M, et al.Regulatory actions of 3’,5’-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling. Ann N Y Acad Sci. 2018;1433(1):18-28. [8] LUO J, YANG Z, MA Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539-546. [9] XIAO L, ZHONG M, HUANG Y, et al.Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways.Aging (Albany NY). 2020;12(21):21706-21729. [10] 姚辛敏,周晓洁,周妍妍. 肉苁蓉化学成分及药理作用研究进展[J].中医药学报,2021,49(2):93-97. [11] BETH-TASDOGAN NH, MAYER, B, HUSSEIN, H, et al.Interventions for managing medication-related osteonecrosis of the jaw. Cochrane Database Syst Rev. 2022;7(7):CD012432. [12] NAN ZD, ZENG KW, SHI SP, et al.Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert. Fitoterapia. 2013:89:167-174. [13] XIONG Q, KADOTA S, TANI T, et al.Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharm Bull. 1996; 19(12):1580-1585. [14] XIONG Q, TEZUKA Y, KANEKO T, et al.Inhibition of nitric oxide by phenylethanoids in activated macrophages. Eur J Pharmacol. 2000; 400(1):137-144. [15] LUO H, CAO R, WANG L, et al. Protective effect of Cistanchis A on ethanol-induced damage in primary cultured mouse hepatocytes. Biomed Pharmacother. 2016:83:1071-1079. [16] XU X, ZHANG Z, WANG W, et al.Therapeutic Effect of Cistanoside A on Bone Metabolism of Ovariectomized Mice. Molecules. 2017;22(2):197. [17] 王代荣. 藁本内酯对RANKL诱导的破骨细胞生成和钛颗粒诱导的颅骨骨溶解的作用机制研究[D]. 南宁:广西医科大学,2019. [18] 中国老年学和老年医学学会骨质疏松分会中医药专家委员会,葛继荣, 王和鸣, 等. 中医药防治原发性骨质疏松症专家共识(2020)[J]. 中国骨质疏松杂志,2020,26(12):1717-1725. [19] WEIVODA MM, BRADLEY EW.Macrophages and Bone Remodeling. J Bone Miner Res. 2023;38(3):359-369. [20] BOYLE WJ, SIMONET WS, LACEY DL.Osteoclast differentiation and activation. Nature. 2003;423(6937):337-342. [21] VEIS DJ, O’BRIEN CA.Osteoclasts, Master Sculptors of Bone. Annu Rev Pathol. 2023;18:257-281. [22] KIM JM, LIN C, STAVRE Z, GREENBLATT MB, et al.Osteoblast-Osteoclast Communication and Bone Homeostasis. 2020;9(9):2073. [23] ANASTASILAKIS AD, MAKRAS P, POLYZOS SA, et al.The Five-Year Effect of a Single Zoledronate Infusion on Bone Mineral Density Following Denosumab Discontinuation in Women with Postmenopausal Osteoporosis. Calcif Tissue Int. 2023;113(4):469-473. [24] MURDOCH R, MELLAR A, HORNE AM., et al.Effect of a Three-Day Course of Dexamethasone on Acute Phase Response Following Treatment With Zoledronate: A Randomized Controlled Trial. J Bone Miner Res. 2023;38(5):631-638. [25] MOON JK, PARK J, YOO Y, et al. The efficacy of Denosumab in the treatment of femoral head osteonecrosis: a retrospective comparative study. Sci Rep. 2024;14(1):4140. [26] EBSTEIN E, BROCARD P, SOUSSI G, et al. Burden of comorbidities: Osteoporotic vertebral fracture during non-small cell lung cancer - the BONE study.Eur J Cancer. 2024:200:113604. [27] 冯朵,王靖,蒋勇军,等. 肉苁蓉总苷对HepG2肝癌荷瘤小鼠的影响 [J]. 食品科学,2024,45(6):120-129. [28] OKAMOTO K, NAKASHIMA T, SHINOHARA M, et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev. 2017;97(4):1295-1349. [29] WEI CM, LIU Q, SONG FM, et al. Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo. J Cell Physiol. 2018;233(1):476-485. [30] SHARMA N, WEIVODA MM, SØE K.Functional Heterogeneity Within Osteoclast Populations-a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Curr Osteoporos Rep. 2022;20(5):344-355. [31] VÄÄNÄNEN HK, ZHAO H, MULARI M; et al.The cell biology of osteoclast function. J Cell Sci.2000;113(Pt 3):377-381. [32] SALTEL F, DESTAING O, BARD F, et al. Apatite-mediated actin dynamics in resorbing osteoclasts.Mol Biol Cell. 2004;15(12):5231-5241. [33] UDAGAWA N, KOIDE M, NAKAMURA M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021; 39(1):19-26. [34] CHANG EJ, HA J, HUANG H, et al.The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation. J Cell Sci. 2008;121(Pt 15):2555-2564. [35] BARDWELL AJ, ABDOLLAHI M, BARDWELL L. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Biochem J. 2003;370(Pt 3):1077-1085. [36] GRIGORIADIS AE, WANG ZQ, CECCHINI MG, et al.c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994;266(5184):443-448. [37] TAKAYANAGI H.The role of NFAT in osteoclast formation. Ann N Y Acad Sci. 2007;1116:227-237. [38] 党祎,姚红林,袁能华. NFATc1在骨质疏松症中的研究进展[J]. 中国骨质疏松杂志,2024,30(2):257-262+274. [39] KIVIRANTA R, MORKO J, ALATALO SL, et al.Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone. 2005;36(1):159-172. [40] TAKAGI T, INOUE H, TAKAHASHI, N, et al.Sulforaphene attenuates multinucleation of pre-osteoclasts by suppressing expression of cell-cell fusion-associated genes DC-STAMP, OC-STAMP, and Atp6v0d2. Biosci Biotechnol Biochem. 2017;81(6):1220-1223. [41] JIANG T, GU H, WEI J.Echinacoside Inhibits Osteoclast Function by Down-Regulating PI3K/Akt/C-Fos to Alleviate Osteolysis Caused by Periprosthetic Joint Infection. Front Pharmacol. 2022;13:930053. |
[1] | Han Haihui, Ran Lei, Meng Xiaohui, Xin Pengfei, Xiang Zheng, Bian Yanqin, Shi Qi, Xiao Lianbo. Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1905-1912. |
[2] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[3] | Zhou Jinhai, Li Jiangwei, Wang Xuquan, Zhuang Ying, Zhao Ying, Yang Yuyong, Wang Jiajia, Yang Yang, Zhou Shilian. Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1775-1782. |
[4] | Zhu Hanmin, Wang Song, Xiao Wenlin, Zhang Wenjing, Zhou Xi, He Ye, Li Wei, . Mitophagy regulates bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1676-1683. |
[5] | Zhao Jiacheng, Ren Shiqi, Zhu Qin, Liu Jiajia, Zhu Xiang, Yang Yang. Bioinformatics analysis of potential biomarkers for primary osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1741-1750. |
[6] | Wang Wentao, Hou Zhenyang, Wang Yijun, Xu Yaozeng. Apelin-13 alleviates systemic inflammatory bone loss by inhibiting macrophage M1 polarization [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1548-1555. |
[7] | Chen Shuai, Jin Jie, Han Huawei, Tian Ningsheng, Li Zhiwei . Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1556-1564. |
[8] | Zhang Zhenyu, Liang Qiujian, Yang Jun, Wei Xiangyu, Jiang Jie, Huang Linke, Tan Zhen. Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1437-1447. |
[9] | Zheng Lin, Jin Wenjun, Luo Shanshan, Huang Rui, Wang Jie, Cheng Yuting, An Zheqing, Xiong Yue, Gong Zipeng, Liao Jian. Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1159-1167. |
[10] |
Huang Xiaobin, Ge Jirong, Li Shengqiang, Xie Lihua, Huang Jingwen, He Yanyan, Xue Lipeng.
Mechanisms of different yin nourishing and kidney tonifying methods on osteoclastysis pathway in ovariectomized rats #br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1214-1219.
|
[11] | Qian Kun, Li Ziqing, Sun Shui . Endoplasmic reticulum stress in the occurrence and development of common degenerative bone diseases [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1285-1295. |
[12] | Lan Shuangli, Xiang Feifan, Deng Guanghui, Xiao Yukun, Yang Yunkang, Liang Jie. Naringin inhibits iron deposition and cell apoptosis in bone tissue of osteoporotic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 888-898. |
[13] | Wang Dongyang, Yang Qiaohui, Lin Xinchao. Relationship between vitamin D levels and reproductive characteristics and exercise dietary situation in postmenopausal women [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1021-1025. |
[14] | Zhang Lichuang, Yang Wen, Ding Guangjiang, Li Peikun, Xiao Zhongyu, Chen Ying, Fang Xue, Zhang Teng. Dispersion effect of bone cement after vertebroplasty using individualized unilateral external pedicle approach and bilateral pedicle approach [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 800-808. |
[15] | Xiao Fang, Huang Lei, Wang Lin. Magnetic nanomaterials and magnetic field effects accelerate bone injury repair [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 827-838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||