[1] DU J, YANG J, HE Z, et al. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front Mol Biosci. 2020;7:585056.
[2] WANG L, YOU X, ZHANG L, et al. Mechanical regulation of bone remodeling. Bone Res. 2022;10(1):16.
[3] JOHNELL O, KANIS JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726-1733.
[4] 白璧辉, 谢兴文, 李鼎鹏, 等. 我国近5年来骨质疏松症流行病学研究现状[J]. 中国骨质疏松杂志,2018,24(2):253-258.
[5] SI L, WINZENBERG TM, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050. Osteoporos Int. 2015; 26(7):1929-1937.
[6] RUIZ-ESTEVES KN, TEYSIR J, SCHATOFF D, et al. Disparities in osteoporosis care among postmenopausal women in the United States. Maturitas. 2022;156:25-29.
[7] VEIS DJ, O’BRIEN CA. Osteoclasts, Master Sculptors of Bone. Annu Rev Pathol. 2023;18:257-281.
[8] COMPSTON JE, MCCLUNG MR, LESLIE WD. Osteoporosis. Lancet. 2019; 393(10169):364-376.
[9] FOESSL I, DIMAI HP, OBERMAYER-PIETSCH B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol. 2023;19(9):520-533.
[10] 于龙, 王亮. 老年骨质疏松症现状及进展[J]. 中国临床保健杂志, 2022,25(1): 6-11.
[11] REID IR, BILLINGTON EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399(10329):1080-1092.
[12] TAKESHITA S, FUMOTO T, MATSUOKA K, et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest. 2013;123(9):3914-3924.
[13] KIM BJ, LEE YS, LEE SY, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Invest. 2018;128(4):1429-1441.
[14] GREWE JM, KNAPSTEIN PR, DONAT A, et al. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res. 2022; 10(1):34.
[15] 任明诗, 丁羽, 李子涵, 等. 成骨细胞与破骨细胞相互调节作用的研究进展[J]. 中国药理学通报,2022,38(6):822-827.
[16] BORCIANI G, MONTALBANO G, BALDINI N, et al. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;108:22-45.
[17] SIMS N, MARTIN TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol. 2020; 82:507-529.
[18] PARK-MIN KH, LORENZO J. Osteoclasts: Other functions. Bone. 2022; 165:116576.
[19] SHI S, DUAN H, OU X. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites. Biomed Pharmacother. 2024;175:116699.
[20] BROWN SA, GUISE TA. Drug insight: the use of bisphosphonates for the prevention and treatment of osteoporosis in men. Nat Clin Pract Urol. 2007;4(6):310-320.
[21] ROSINI S, ROSINI S, BERTOLDI I, et al. Understanding bisphosphonates and osteonecrosis of the jaw: uses and risks. Eur Rev Med Pharmacol Sci. 2015;19(17):3309-3317.
[22] JENSEN PR, ANDERSEN TL, CHAVASSIEUX P, et al. Bisphosphonates impair the onset of bone formation at remodeling sites. Bone. 2021; 145:115850.
[23] XU H, LU X, LI M, et al. Jiangu formula: A novel osteoclast-osteoblast coupling agent for effective osteoporosis treatment. Phytomedicine. 2024;128:155501.
[24] 许华珍, 黄丹娥, 郑柳怡, 等. 健骨方对破骨细胞形成和成骨细胞增殖分化的影响[J]. 中国骨质疏松杂志,2022,28(12):1728-1734.
[25] 许金松, 邓娜, 张潇. 骨碎补影响破骨细胞分化的程度与含药血清浓度有关[J]. 中国组织工程研究,2020,24(29):4620-4625.
[26] HUANG D, LUO X, YIN Z, et al. Diterpenoids from the aerial parts of Flueggea acicularis and their activity against RANKL-induced osteoclastogenesis. Bioorg Chem. 2020;94:103453.
[27] UDAGAWA N, KOIDE M, NAKAMURA M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021; 39(1):19-26.
[28] TSURUKAI T, UDAGAWA N, MATSUZAKI K, et al. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab. 2000;18(4):177-184.
[29] VIMALRAJ S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855.
[30] JIANG Q, NAGANO K, MORIISHI T, et al. Roles of Sp7 in osteoblasts for the proliferation, differentiation, and osteocyte process formation. J Orthop Translat. 2024;47:161-175.
[31] HOJO H, OHBA S. Gene regulatory landscape in osteoblast differentiation. Bone. 2020;137:115458.
[32] LIU Y, CHEN Y, LI XH, et al. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells. 2023;16(3):342-355.
[33] KIM JM, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073.
[34] KIM BJ, KOH JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci. 2019;76(7):1243-1253.
[35] PEDERSON L, RUAN M, WESTENDORF JJ, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008; 105(52):20764-20769.
[36] MATSUOKA K, PARK KA, ITO M, et al. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522-1530.
[37] SALHOTRA A, SHAH HN, LEVI B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711.
[38] XU X, HAN Y, ZHU T, et al. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother. 2023;169:115838.
|