[1] Rengier F,Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010; 5(4): 335-341.
[2] 付军,郭征,王臻,等.多种3-D打印手术导板在骨肿瘤切除重建手术中的应用[J]. 中国修复重建外科杂志, 2014, 28(3): 304-308.
[3] Bagaria V, Deshpande S, Rasalkar DD, et al. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol. 2011; 80(3): 814-820.
[4] Hananouchi T, Saito M, Koyama T, et al. Tailor-made surgical guide based on rapid prototyping technique for cup insertion in total hip arthroplasty. Int J Med Robot. 2009; 5(2): 164-169.
[5] Shu DL, Liu XZ, Guo B, et al. Accuracy of using computer- aided rapid prototyping templates for mandible reconstruction with an iliac crest graft. World J Surg Oncol. 2014;12: 190.
[6] Taft RM, Kondor S, Grant GT. Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent. 2011;106(6): 399-408.
[7] 彭峰. 应用快速成型和激光近形制造技术制作磨牙全冠的实验探究与分析[J]. 海南医学院学报,2013,19(5): 693-695.
[8] Tricot M, Duy KT, Docquier PL. 3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity. Acta Orthop Belg. 2012;78(4): 538-542.
[9] Benum P, Aamodt A, Nordsletten L. Customised femoral stems in osteopetrosis and the development of a guiding system for the preparation of an intramedullary cavity: a report of two cases. J Bone Joint Surg Br. 2010;92(9): 1303-1305.
[10] Pang L, Hao W, Jiang M, et al. Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/beta- tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells. Indian J Orthop. 2013;47(4): 388-394.
[11] Singh H, Shimojima M, Shiratori T, et al. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases. Sensors (Basel). 2015;15(7): 16503-15.
[12] D'Urso PS, Barker TM, Earwaker WJ, et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg. 1999;27(1): 30-37.
[13] Cartiaux O, Paul L, Francq BG, et al. Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery. Ann Biomed Eng. 2014;42(1): 205-213.
[14] Faur C, Crainic N, Sticlaru C, et al. Rapid prototyping technique in the preoperative planning for total hip arthroplasty with custom femoral components. Wien Klin Wochenschr. 2013;125(5-6): 144-149.
[15] Debarre E, Hivart P, Baranski D, et al. Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop Traumatol Surg Res. 2012;98(5): 597-602.
[16] 冯珍,杨初燕,吴磊,等.个体化截瘫行走支具对脊髓损伤患者功能的影响[J].中国康复医学杂志,2010,25(9): 854-857.
[17] 张俊,郭英,李克峰.肩部骨折体外再现技术在骨科教学中的应用[J]. 医学教育探索,2010,9(9): 1246-1248.
[18] 笪熠,陈适,潘慧,等. 3D打印技术在医学教育的应用[J]. 协和医学杂志,2014,(2): 234-237.
[19] Zhang S, Liu X, Xu Y, et al. Application of rapid prototyping for temporomandibular joint reconstruction. J Oral Maxillofac Surg. 2011;69(2): 432-8.
[20] Sanghera B, Naique S, Papaharilaou Y, et al. Preliminary study of rapid prototype medical models. Rapid Prot J. 2001; 7(5):275-284.
[21] Hieu LC, Zlatov N, Sloten JV, et al. Medical rapid prototyping applications and thods. Assemb Aut. 2005; 25(4): 284-292.
[22] Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput. 2012;50(7): 751-758.
[23] Fu M, Lin L, Kong X, et al. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS) insertion: an in vitro study. PLoS One. 2013; 8(1): e53580.
[24] 戎帅,滕勇,乌日开西•艾依提,等.基于3D打印技术的腰椎多节段峡部裂个性化手术治疗[J].中国矫形外科杂志,2013, 21(21): 2222-2226.
[25] Yang M, Li C, Li Y, et al. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore). 2015; 94(8): e582.
[26] 章凯,陈育岳,夏虹等. 3D打印技术辅助复杂性寰枢椎脱位手术临床应用[J].中国数字医学,2013, 8(10): 58-60.
[27] Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput. 2012;50(7): 751-758.
[28] Wu ZX, Huang LY, Sang HX, et al. Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech. 2011;24(7): 444-450.
[29] Mao K, Wang Y, Xiao S, et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J. 2010;19(5): 797-802.
[30] Duart CJ, Llombart BR, Beguiristain GJL. [Morphological changes in scoliosis during growth. Study in the human spine]. Rev Esp Cir Ortop Traumatol. 2012;56(6): 432-438.
[31] Levine JP, Patel A, Saadeh PB, et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. J Craniofac Surg. 2012;23(1): 288-293.
[32] Zhang YZ, Lu S, Chen B, et al. Application of computer-aided design osteotomy template for treatment of cubitus varus deformity in teenagers: a pilot study. J Shoulder Elbow Surg. 2011; 20(1): 51-56.
[33] Tricot M, Duy KT, Docquier PL. 3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity. Acta Orthop Belg. 2012;78(4): 538-542.
[34] 钱文彬,杨欣建,蓝涛,等. 3D技术打印椎体在全脊椎整块切除术中应用的初步探索[J].生物骨科材料与临床研究,2015,12(2): 9-11.
[35] 李祥,王成焘.快速成形技术制造组织工程支架研究进展[J]. 生物工程学报,2008,24(8): 1321-1326.
[36] Peltola SM, Melchels FP, Grijpma DW, et al. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40(4): 268-280.
[37] Hoque ME, Hutmacher DW, Feng W, et al. Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed. 2005;16(12): 1595-1610.
[38] 李涤尘,卢秉恒,吴永辉,等.人工生物活性骨骼的快速制造方法研究[J].中国机械工程, 2000,11(z1): 103-105.
[39] Wang C, Xue Y, Lin K, et al. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using beta-CaSiO3/beta-Ca3(PO4)2 composite bioceramics. Acta Biomater. 2012;8(1):350-360.
[40] Liu FH. Synthesis of bioceramic scaf olds for bone tissue engineering by rapid prototyping technique. J Sol-Gel Sci Technol. 2012;64(3):704-710.
[41] Quadrani P, Pasini A, Mattiolli-Belmonte M, et al. High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique. Med Biol Eng Comput. 2005;43(2): 196-199.
[42] Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1): 5360.
[43] Wu WG,Zheng QX,Guo XD, et al. The Controlled-releasing Drug Implant based on the Three Dimensional Printing Technology: Fabrication and Properties of Drug Releasing in vivo. J Wuhan Univers Technol. 2009;24(6):977-981.
[44] Lee JW, Cho DW. 3D Printing technology over a drug delivery for tissue engineering. Curr Pharm Des. 2015;21(12): 1606-1617.
[45] Zopf DA, Mitsak AG, Flanagan CL, et al. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissuereconstruction. Otolaryngol Head Neck Surg. 2015;152(1):57-62.
[46] Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015; 1(9):e1500758.
[47] Hourd P, Medcalf N, Segal J, et al. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes. Regen Med. 2015;10(7):863-883.
[48] Jung JW, Lee H, Hong JM, et al. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Biofabrication. 2015;7(4):045003.
[49] Zhao Y, Li Y, Mao S,et al. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3Dcell printing technology.Biofabrication. 2015;7(4):045002.
[50] Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013; 5(1): 015001. |