Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (24): 5093-5101.doi: 10.12307/2025.729
Previous Articles Next Articles
Lin Yixin1, Wang Wenyi2, Lei Xiaoqing1, Ma Dezun1, Huang Yanfeng1, Fu Changlong3, Ye Jinxia1, 3
Received:
2024-07-11
Accepted:
2024-09-05
Online:
2025-08-28
Published:
2025-01-23
Contact:
Ye Jinxia, MD, Senior laboratory technician, Master’s supervisor, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, Fujian Province, China
About author:
Lin Yixin, Master’s candidate, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
Supported by:
CLC Number:
Lin Yixin, Wang Wenyi, Lei Xiaoqing, Ma Dezun, Huang Yanfeng, Fu Changlong, Ye Jinxia. Tougu Xiaotong Capsules for treating arthritis according to the principle of “Same Treatment for Different diseases”: analysis based on integrated pharmacology, molecular docking techniques and molecular dynamics simulation[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5093-5101.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 疾病相关靶点与药物-疾病交集靶点 经过GeneCards和OMIM数据库检索,获得骨关节炎、类风湿性关节炎及痛风性关节炎靶点分别为716,320,1 489个,交集靶点共有109个。疾病交集靶点与药物靶点交集共获得“异病同治”靶点29个,如图1所示。 2.3 蛋白相互作用网络 通过将骨关节炎、类风湿性关节炎及痛风性关节炎的潜在靶点基因导入到STRING数据库,构建疾病与成分靶点的蛋白质-蛋白质互作网络,如图2所示。该网络包含了109个相互关联的蛋白质,筛选得到核心靶点白细胞介素6、白细胞介素1β、前列腺素内过氧化物合酶(prostaglandin-endoperoxide synthase,PTGS)1、前列腺素内过氧化物合酶2、CYP1A2、CXCL8,可能是透骨消痛胶囊治疗骨关节炎、类风湿性关节炎及痛风性关节炎的重要PPI网络。 2.4 潜在靶点GO及KEGG通路富集分析 GO富集分析结果显示,透骨消痛胶囊异病同治骨关节炎、类风湿性关节炎及痛风性关节炎靶点涉及的生物过程主要包括细胞对脂多糖的反应、炎症反应、RNA聚合酶Ⅱ启动子转录的正调控、基因表达的正调控、转录的正调控、DNA模板信号转导等;涉及的细胞组分主要包括细胞外空间、富含ficolin-1的颗粒管腔、细胞外基质等;涉及的分子功能主要包括蛋白质结合、锌离子结合、血红素结合、铁离子结合、酶结合、RNA聚合酶Ⅱ转录因子活性,配体激活的序列特异性DNA结合等,结果如图3所示。 KEGG通路富集分析结果显示,透骨消痛胶囊治疗骨关节炎、类风湿性关节炎及痛风性关节炎的主要通路为白细胞介素17信号通路、肿瘤坏死因子信号通路及NOD样受体、Toll样受体信号通路等,结果如图4所示。并绘制核心信号通路与核心靶点的桑基图,将通路与靶点之间的相关性可视化,结果如图5所示。 2.5 分子对接结果 选取核心靶点白细胞介素6、白细胞介素1β、前列腺素内过氧化物合酶1、前列腺素内过氧化物合酶2、CYP1A2、CXCL8与beta-sitosterol、kaempferol、myricanone、quercetin、wallichilide等成分进行分子对接,结果如表2所示。分子对接结果显示,CYP1A2与wallichilide(川芎内酯)、kaempferol(山奈酚)、quercetin(槲皮素)结合效果最好,前列腺素内过氧化物合酶2与其余化合物结合皆有较好的效果,关键化合物与核心靶蛋白分子之间的对接模式如图6所示。"
2.6 分子动力学模拟结果 根据相关文献报道及分子对接结果,预测CYP1A2可能是川芎内酯治疗骨关节炎、类风湿性关节炎及痛风性关节炎的的重要靶点。此次研究进一步使用分子动力学模拟检测川芎内酯与CYP1A2结合的稳定性,获得川芎内酯和CYP1A2在蛋白质上均方根偏差(rootmeansquareerror,RMSD)和均方根波动(rootmeansquaredeviation,RMSF)的结果。由图7可知,在分子动力学模拟的初始阶段(0-20 ns),RMSD值存在较大变化。20 ns以后,RMSD曲线波动幅度减低接近平稳,波动范围仅为0.1 nm,表明该体系在结合模式上具有较高的稳定性和平衡性。 计算蛋白质与小分子之间的HBond,评估蛋白质与小分子之间氢键的指标,结果如图8所示,在模拟的过程中,蛋白质与小分子之间形成了许多氢键,其中以蛋白质中的一些关键残基和小分子中的一些重要基团之间的氢键为主。 计算蛋白质与小分子之间的Gyrate,结果如图9所示,评估蛋白质整体紧凑程度,其Gyrate值相较于单独的蛋"
[1] 姜泉,王海隆,巩勋,等. 类风湿关节炎病证结合诊疗指南[J]. 中医杂志,2018,59(20):1794-1800. [2] 中华中医药学会. 膝骨关节炎中西医结合诊疗指南(2023年版)[J]. 中医正骨,2023,35(6):1-10. [3] 刘维. 痛风及高尿酸血症中西医结合诊疗指南[J]. 中医杂志,2023, 64(1):98-106. [4] 付长龙,林艳铭,涂海水,等. 基于lncRNA MALAT1调控软骨细胞胆固醇代谢探讨透骨消痛胶囊延缓骨关节炎退变的机制研究[J]. 中国中药杂志,2024,49(7):1785-1792. [5] 付长龙,梅阳阳,谢新宇,等. 从lncRNA NEAT1和IRE1α/XBP1信号通路探讨透骨消痛胶囊改善膝骨关节炎内质网应激研究[J]. 福建中医药,2023,54(6):37-39. [6] 林木南,邵翔,许丽梅,等. 透骨消痛胶囊调节Ras-Raf-MEK1/2-ERK1/2信号通路抑制骨关节炎炎症反应的机制研究[J]. 康复学报, 2021,31(3):228-233. [7] 黄云梅,冯芳芳,陈文列,等. 透骨消痛胶囊干预早期骨关节炎滑膜水肿模型大鼠的抗炎消肿作用[J]. 中国组织工程研究,2021, 25(17):2697-2702. [8] 安子萌,付乾芳,薛雅若,等. 基于网络药理学、分子对接、分子动力学模拟探讨茸菖胶囊治疗小儿癫痫的靶点机制[J]. 天津中医药,2023,40(4):495-505. [9] 陈琴,张志云,朱云婴,等. 基于网络药理学、分子对接及分子动力学模拟探讨黄连治疗溃疡性结肠炎的作用机制[J]. 现代药物与临床,2023,38(10):2444-2450. [10] LI X, WEI S, NIU S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022; 144:105389. [11] ZHAO L, ZHANG H, LI N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. [12] 刘俊鹏,谢兴文,黄委委,等. 网络药理学在中药治疗膝骨关节炎中的应用进展[J].临床医学研究与实践,2023,8(8):170-173. [13] AMAN ZS, DEPHILLIPO NN, FAMILIARI F, et al. Acute Intervention With Selective Interleukin-1 Inhibitor Therapy May Reduce the Progression of Posttraumatic Osteoarthritis of the Knee: A Systematic Review of Current Evidence. Arthroscopy. 2022;38(8):2543-2556. [14] XU W, ZHANG B, XI C, et al. Ferroptosis Plays a Role in Human Chondrocyte of Osteoarthritis Induced by IL-1beta In Vitro.Cartilage. 2023;14(4):455-466. [15] LU J, MIAO Z, JIANG Y, et al. Chrysophanol prevents IL-1beta-Induced inflammation and ECM degradation in osteoarthritis via the Sirt6/NF-kappaB and Nrf2/NF-kappaB axis. Biochem Pharmacol. 2023;208:115402. [16] NAKAYAMA Y, WATANABE R, YAMAMOTO W, et al. IL-6 inhibitors and JAK inhibitors as favourable treatment options for patients with anaemia and rheumatoid arthritis: ANSWER cohort study. Rheumatology (Oxford). 2024;63(2):349-357. [17] LOPEZ J, AL-NAKKASH L, BRODERICK TL, et al. Genistein Suppresses IL-6 and MMP-13 to Attenuate Osteoarthritis in Obese Diabetic Mice. Metabolites. 2023;13(9):1014. [18] 李芨慧,李玉宏,葛丽丽. 急性痛风性关节炎患者肌骨超声半定量评分与红细胞沉降率、白细胞介素-6水平及疾病活动度相关性分析[J]. 陕西医学杂志,2022,51(3):318-321. [19] CORNELIS MC, BAE SC, KIM I, et al. CYP1A2 genotype and rheumatoid arthritis in Koreans. Rheumatol Int. 2010;30(10):1349-1354. [20] TEKAYA R, ROUACHED L, BEN AH, et al. Variation of homocysteine levels in rheumatoid arthritis patients: relationship to inflammation, cardiovascular risk factors, and methotrexate. Z Rheumatol. 2023; 82(Suppl 1):38-43. [21] MISHIMA S, KASHIWAKURA JI, TOYOSHIMA S, et al. Higher PGD(2) production by synovial mast cells from rheumatoid arthritis patients compared with osteoarthritis patients via miR-199a-3p/prostaglandin synthetase 2 axis. Sci Rep. 2021;11(1):5738. [22] HOSOYA T, SHUKLA NM, FUJITA Y, et al. Identification of Compounds With Glucocorticoid Sparing Effects on Suppression of Chemokine and Cytokine Production by Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Pharmacol. 2020;11:607713. [23] SHIN SH, JEONG J, KIM JH, et al. 1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Mitigates Monosodium Urate (MSU)-Induced Acute Gouty Inflammation in BALB/c Mice. Front Immunol. 2020;11:710. [24] GREMESE E, TOLUSSO B, BRUNO D, et al. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17-Unmet needs and therapeutic perspectives. Front Med (Lausanne). 2023;10:956127. [25] XIAO J, ZHANG P, CAI FL, et al. IL-17 in osteoarthritis: A narrative review.Open Life Sci. 2023;18(1):20220747. [26] 吴广文,褚剑锋,许惠凤,等. 透骨消痛胶囊含药血清对退变关节软骨细胞表达TNF-α、IL-1β的影响[J]. 世界中西医结合杂志, 2012,7(4):295-298,310. [27] 齐麒,欧梁,黄维琛,等. 基于TLR4/MyD88/NF-κB信号通路探讨通络蠲痹颗粒对骨关节炎炎症损伤和细胞凋亡的影响[J]. 中国实验方剂学杂志,2024,30(10):29-36. [28] 刘毓,杨钊田,孙理军. 基于TLR4、NF-κB信号通路探讨当归拈痛汤治疗痛风性关节炎的作用机制[J]. 中南药学,2023,21(10):2606-2615. [29] 许建,刘天泽,郑寿鹏,等. 骨碎补醇提物对骨关节炎大鼠滑膜组织中TLR4-NF-κB信号转导的影响[J]. 解剖科学进展,2023,29(4):419-422. [30] YIN H, LIU N, SIGDEL KR, et al. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol. 2022;13:931690. [31] 朴勇洙,齐明明,聂双莲,等. 基于BRD4/NF-κB/NLRP3通路介导的巨噬细胞焦亡探讨三石汤抑制痛风性关节炎的分子机制研究[J].海南医学院学报,2023,29(24):1863-1869. [32] 谷慧敏,孟庆良,左瑞庭,等. β-谷甾醇对类风湿性关节炎滑膜成纤维细胞功能的影响及机制[J].中国药房,2023,34(15):1847-1852. [33] PERIFERAKIS A, PERIFERAKIS AT, TROUMPATA L, et al. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci. 2023; 24(22):16299. [34] 王飞,梅群超,冯晶,等. 山奈酚调控ROS/TXNIP通路对膝骨关节炎大鼠软骨细胞氧化及炎性损伤的改善作用[J].中国老年学杂志, 2024,44(1):229-233. [35] LI N, CHEN S, DENG W, et al. Kaempferol Attenuates Gouty Arthritis by Regulating the Balance of Th17/Treg Cells and Secretion of IL-17. Inflammation. 2023;46(5):1901-1916. [36] HU Y, GUI Z, ZHOU Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146-160. [37] LIU X, TAO T, YAO H, et al. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies. Inflammopharmacology. 2023;31(4):1629-1645. [38] FENG W, ZHONG X, ZHENG X, et al. Study on the effect and mechanism of quercetin in treating gout arthritis. Int Immunopharmacol. 2022; 111:109112. |
[1] | Zou Rongji, Yu Fangfang, Wang Maolin, Jia Zhuopeng. Triptolide inhibits ferroptosis and improves cerebral ischemia-reperfusion injury in a rat model of cerebral artery occlusion/reperfusion [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 873-881. |
[2] | Chen Xiaoqing, Bian Luyao, Lu Xingyu, Yang Tao, Li Xiang Hai. Thread embedding pretreatment at Xinshu (BL 15) improves cardiac function of acute myocardial ischemia rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 882-891. |
[3] | Wang Mingqi, Feng Shiya, Han Yinhe, Yu Pengxin, Guo Lina, Jia Zixuan, Wang Xiuli. Construction and evaluation of a neuralized intestinal mucosal tissue engineering model in vitro [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 892-900. |
[4] | Wang Jie, Huang Rui, Zhang Ye, Shou Zhaoxi, Yao Jie, Liu Chenxi, Liao Jian. Role and mechanism of probiotics in peri-implantitis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 901-907. |
[5] | Yang Xiao, Bai Yuehui, Zhao Tiantian, Wang Donghao, Zhao Chen, Yuan Shuo. Cartilage degeneration in temporomandibular joint osteoarthritis: mechanisms and regenerative challenges [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 926-935. |
[6] | Yu Shiyu, Yu Sutong, Xu Yang, Zhen Xiangyan, Han Fengxuan. Advances in research and application of tissue engineering therapeutic strategies in oral submucous fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 936-948. |
[7] | Jin Zhiyong, Wang Yufeng, Zhao Binjie, Xiong Minquan, Yan Li. Effects of inter-limb asymmetry on athletic performance from the perspective of bilateral limb control strategy [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 949-963. |
[8] | Rong Xiangbin, , Zheng Haibo, Mo Xueshen, Hou Kun, Zeng Ping, . Plasma metabolites, immune cells, and hip osteoarthritis: causal inference based on GWAS data from European populations [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 1028-1035. |
[9] | Gu Fucheng, Yang Meixin, Wu Weixin, Cai Weijun, Qin Yangyi, Sun Mingyi, Sun Jian, Geng Qiudong, Li Nan. Effects of Guilu Erxian Glue on gut microbiota in rats with knee osteoarthritis: machine learning and 16S rDNA analysis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 1058-1072. |
[10] | Chen Yixian, Chen Chen, Lu Liheng, Tang Jinpeng, Yu Xiaowei. Triptolide in the treatment of osteoarthritis: network pharmacology analysis and animal model validation [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 805-815. |
[11] | Bao Zhuoma, Hou Ziming, Jiang Lu, Li Weiyi, Zhang Zongxing, Liu Daozhong, Yuan Lin. Effect and mechanism by which Pterocarya hupehensis skan total flavonoids regulates the proliferation, migration and apoptosis of fibroblast-like synoviocytes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 816-823. |
[12] | Yan Chengbo, Luo Qiuchi, Fan Jiabing, Gu Yeting, Deng Qian, Zhang Junmei. Effect of type 2 diabetes mellitus on orthodontic tooth movement and bone microstructure parameters on the tension side in rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 824-831. |
[13] | Xu Shencong, Fang Zifei, Ji Mingyi, Xu Chengrui, Li Binhong, Cao Jiayu, Xu Junfeng. Application of Onlay bone grafts from mandibular lateral oblique line in implant restoration of bone defects in upper anterior teeth [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 841-848. |
[14] | Ma Hong, Ding Xueling, Wang Qi, Lyu Hui, Asya Albusm, Cheng Xinyi, Ma Xiang. Expression and significance of tumor necrosis factor alpha, nuclear factor kappaB and ionized calcium binding adaptor molecule-1 in the hippocampus of mice with aortic dissection [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 858-863. |
[15] | Zhang Yibo, Lu Jianqi, Mao Meiling, Pang Yan, Dong Li, Yang Shangbing, Xiao Xiang. Exploring the causal relationship between rheumatoid arthritis and coronary atherosclerosis: a Mendel randomized study involving serum metabolites and inflammatory factors [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(在线): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||