[1] CABRERA-AGUAS M, KHOO P, WATSON SL. Infectious keratitis: A review. Clin Exp Ophthalmol. 2022;50(5):543-562.
[2] GAYTON JL. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol. 2009;3:405-412.
[3] MOSHIRFAR M, MOODY JJ, BARKE MR, et al. The historical development and an overview of contemporary keratoprostheses. Surv Ophthalmol. 2022;67(4):1175-1199.
[4] TEY KY, CHEONG EZK, ANG M. Potential applications of artificial intelligence in image analysis in cornea diseases: a review. Eye Vis (Lond). 2024;11(1):10.
[5] RIAU AK, LWIN NC, GELFAND L, et al. Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration. Acta Biomater. 2020;107:299-312.
[6] KINOSHITA S, KOIZUMI N, UENO M, et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med. 2018; 378(11):995-1003.
[7] ZHANG C, DU L, SUN P, et al. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials. 2017;124:180-194.
[8] WANG X, ELBAHRAWI RT, ABDUKADIR AM, et al. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol. 2023:14:1193606. doi: 10.3389/fphar.2023.1193606.
[9] HE B, WANG J, XIE M, et al. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247.
[10] CATALÀ P, THURET G, SKOTTMAN H, et al. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res. 2022;87: 100987.
[11] ZHAO J, TIAN M, LI Y, et al. Construction of tissue-engineered human corneal endothelium for corneal endothelial regeneration using a crosslinked amniotic membrane scaffold. Acta Biomater. 2022;147: 185-197.
[12] GHOSH A, SINGH VK, SINGH V, et al. Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells. 2022;11(20):3310.
[13] DOHLMAN C. The Boston Keratoprosthesis-The First 50 Years: Some Reminiscences. Annu Rev Vis Sci. 2022;8(1):1-32.
[14] LI Z, WANG Q, ZHANG SF, et al. Timing of glaucoma treatment in patients with MICOF: A retrospective clinical study. Front Med (Lausanne). 2022;9:986176.
[15] DONG Y, YANG J, WANG L, et al. An improved biofunction of Titanium for keratoprosthesis by hydroxyapatite-coating. J Biomater Appl. 2014; 28(7):990-997.
[16] GABRIEL BS, ROBBINS CB, WISELY CE, et al. Incidence, risk factors, and treatment of retroprosthetic membranes following Boston keratoprosthesis eyes and the impact of glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2024. doi: 10.1007/s00417-024-06445-6
[17] CHAROENROOK V, MICHAEL R, DE LA PAZ MF, et al. Comparison of long-term results between osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis. Ocul Surf. 2018;16(2):259-264.
[18] ARORA A, PANDEY SK, ROYCHOUDHURY A, et al. Piezoelectric harvest of osteo-odonto-lamina in modified osteo-odonto keratoprosthesis: A maxillofacial perspective. Natl J Maxillofac Surg. 2018;9(2):167.
[19] HISHAM M, SALIH AE, BUTT H. 3D Printing of Multimaterial Contact Lenses. ACS Biomater Sci Eng. 2023;9(7):4381-4391.
[20] RAESIAN P, RAD MS, KHODAVERDI E, et al. Preparation and characterization of fluorometholone molecular imprinted soft contact lenses as ocular controlled drug delivery systems. J Drug Deliv Sci Technol. 2021;64:102591.
[21] JIRÁSKOVÁ N, ROZSIVAL P, BUROVA M, et al. AlphaCor artificial cornea: clinical outcome. Eye. 2011;25(9):1138-1146.
[22] COASSIN M, ZHANG C, GREEN WR, et al. Histopathologic and Immunologic Aspects of AlphaCor Artificial Corneal Failure. Am J Ophthalmol. 2007;144(5):699-704.e4.
[23] LIU T, SHEN M, HUANG L, et al. Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. J Mech Behav Biomed Mater. 2020;103:103575.
[24] LAGALI N. Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Curr Eye Res. 2020;45(3):278-290.
[25] HAO Y, ZHOU J, TAN J, et al. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioact Mater. 2023;29: 265-278.
[26] FERNÁNDEZ-PÉREZ J, MADDEN PW, BRADY RT, et al. The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model PLoS One. 2021;16(6):e0245406.
[27] WANG X, SHAKEEL A, SALIH AE, et al. A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste. Front Bioeng Biotechnol. 2023;11:1133122.
[28] LJUBIMOV AV, SAGHIZADEH M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45.
[29] WANG SY, KIM H, KWAK G, et al. Development of Biocompatible HA Hydrogels Embedded with a New Synthetic Peptide Promoting Cellular Migration for Advanced Wound Care Management. Adv Sci (Weinh). 2018;5(11):1800852.
[30] ZHANG L, CHEN L, XIANG Y, et al. Multifunctional integrally-medicalized hydrogel system with internal synergy for efficient tissue regeneration. Chem Eng J. 2021;406:126839.
[31] HSU HC, KE YL, LAI YH, et al. Chondroitin Sulfate Enhances Proliferation and Migration via Inducing β-Catenin and Intracellular ROS as Well as Suppressing Metalloproteinases through Akt/NF-ϰB Pathway Inhibition in Human Chondrocytes. J Nutr. 2022;26(3): 307-313.
[32] NZIGOU MOMBO B, BIJONOWSKI BM, RAAB CA, et al. Reversible photoregulation of cell-cell adhesions with opto-E-cadherin. Nat Commun. 2023;14(1):6292.
[33] LEE S, KIM MS, JUNG SJ, et al. ERK activating peptide, AES16-2M promotes wound healing through accelerating migration of keratinocytes. Sci Rep. 2018;8(1):14398.
[34] MAURIS J, WOODWARD AM, CAO Z, et al. Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3. J Cell Sci. 2014;127(Pt 14):3141-3148. |