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Abstract  
BACKGROUND: The importance of autophagy for maintaining cellular homeostasis and stress response has long 
been recognized. As a way for cells to selectively clear their damaged organelles to achieve the recycling of cellular 
components, autophagy has a pivotal role in bone metabolism. 
OBJECTIVE: To review the role and possible mechanisms of autophagy in regulating bone-related cell activity and 
function among bone marrow mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. 
METHODS: PubMed was searched for studies related to autophagy using the keywords of “autophagy; bone marrow 
mesenchymal stem cells; osteoblasts; osteocytes; osteoclasts.” 
RESULTS AND CONCLUSION: We finally included 84 papers. Autophagy plays an important role in bone metabolism. 
Autophagy is involved in maintaining the balance between mineralization and absorption, and then maintaining bone 
homeostasis. An appropriate autophagy inducer may also benefit bone remodeling. Abnormal autophagy can lead to 
disorders of bone balance, leading to diseases such as osteoporosis. We may prevent or treat bone-related diseases 
by regulating the level of autophagy as its function in maintaining the balance of mineralization and resorption in bone 
homeostasis.
Key words: autophagy; bone marrow mesenchymal stem cell; osteoblast; osteocyte; osteoclast; bone homeostasis; 
bone mineralization; bone resorption

Introduction 
Life is in constant dynamic activities, constantly communicating with 
the outside world, generating and consuming energy to maintain 
normal activities. In addition to obtaining energy and substances 
from the outside world, researchers in recent years have found that 
when cells face external environmental pressures, such as lack of 
nutrients, hypoxia, injury, or under pathological conditions, they 
can use lysosomal-dependent pathways to damaged organelles, 
organic matter, which are recycled to meet their own needs. This 
phenomenon is called autophagy[1]. 

Autophagy level can be up-regulated when cells are exposed to 
external stresses, which is critical for maintaining the cell viability and 
normal metabolic functions in living bodies. Current evidence shows 
that autophagy is involved in the development of many common 
diseases, such as stroke, cancer, obesity, atherosclerosis, myocardial 
infarction, diabetes, inflammation, infectious diseases, aging and 
neurodegenerative diseases[2]. Furthermore, autophagy participates 
in the process of many bone-related diseases, such as osteoporosis, 
fracture healing, rheumatoid arthritis, osteonecrosis, Paget’s disease 
and osteosarcoma[3-5].

Skeleton is an important part of the motor system. Skeletal muscle is 
attached to it to provide support and protection for the body and to 
complete various human actions in cooperation. In order to maintain 
the strength and function of bone, bone tissue has been constantly 
reshaped to meet the needs of the body’s mechanical properties. Bone 
remodeling is mainly involved in osteoblasts, the cells responsible for 
bone formation, osteoclasts, the cells specialized for bone resorption, 
and osteocytes, the multifunctional mechanosensing cells embedded 
in the bone matrix, which involves the removal of damaged bone and 
the possession of new regeneration of mechanically stressed new 
bone[6, 7]. Bone is in the dynamic balance of osteocytes, osteoblasts, 
and osteoclasts. The autophagy activities have been shown to clear 
the waste materials generated during the bone metabolism process, 
so as to prevent a series of orthopedic diseases.

With the in-depth study of cell autophagy in recent years, increasing 
evidence has shown that autophagy is related to bone cells and 
regulates the activity and function of these three kinds of cells. The 
purpose of this review is to update some recent understanding of the 
role of autophagy in bone metabolism and how autophagy regulates 
the activity and function of bone cells.
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related genes (ATG). Chaperone proteins will selectively bind to the 
target protein and directly enter the lysosome to complete the cycle. 
The autophagy can be divided into the following four stages[13,14] 
(Figure 2).

DATA AND METHODS  
Data sources
PubMed database was searched for relevant articles using the key-
words of “autophagy; bone marrow mesenchymal stem cells; osteo-
blast; osteocytel osteoclasts.”

Inclusion and exclusion criteria
Inclusion criteria: (1) Articles related to autophagy and the activity 
and function of bone marrow mesenchymal stem cells (BMSCs), 
osteoblasts, osteocytes, and osteoclasts; (2) preferentially select 
high-scoring articles with a high degree of correlation in the past 10 
years. Exclusion criteria: Articles that do not match the objective of 
the review.

Quality assessment and data extraction
References that meet the selection criteria were included, and 
repetitive references that are irrelevant to the objective of the review 
were excluded. A total of 278 articles published from 2005 to 2020 
were retrieved, and 84 articles were finally included according to the 
inclusion criteria (Figure 1).

Search the PubMed database

Keywords: autophagy, bone marrow mesenchymal stem cells, osteoblast, osteocyte, 
osteoclasts

278 articles retrieved

Exclude repetitive references

185 articles included

Select high-scoring articles in the past 10 years

84 articles finally included

Figure 1 ｜ Literature screening diagram

RESULTS 
Autophagy and its formation 
Autophagy first observed by Ashford and Porter[8] under an electron 
microscope in 1962 is an essential cellular homeostatic mechanism 
that maintains homeostasis and stress sensitivity by removing 
dysfunctional organelles or macromolecules. There are various 
types of autophagy, including microautophagy, macroautophagy 
and chaperone-mediated autophagy. Each of them remains its 
unique mechanisms and functions[9,10]. Both microautophagy and 
macroautophagy have the capacity to engulf large structures 
through both selective and non-selective mechanisms, whereas 
chaperone-mediated autophagy degrades only soluble proteins in a 
selective manner. In microautophagy, lysosomes directly engulf the 
surrounding cytoplasm by invading or protruding their membranes. 
The maintenance of organelle cell, membrane homeostasis, and 
cell survival under nitrogen restriction are the main functions of 
macroautophagy[11], while macroautophagy will form double-layered 
membrane autophagosomes to wrap damaged cell components. 
Chaperone-mediated autophagy selectively transfers substrates to 
lysosomal membranes by binding to pentapeptides similar to the 
KFERQ sequence[12]. Macroautophagy is the main type of autophagy 
and has been identified to be regulated by more than 40 autophagy-

Note: (A) Production and extension of autophagy membrane. (B) Fusion 
of autophagy. (C) Degradation of autophagosome. ATG: autophagy-related 
genes; FIP200: focal adhesion kinase family interacting protein of 200 000; 
LC3: microtubule-associated protein 1A/1B-light chain 3; PI3KC3: class III 
phosphatidylinositol 3-kinase; ULK1: unc-51 like autophagy activating kinase 1. 
Figure 2 ｜ The main process of autophagy

I. The occurrence of autophagy membrane: The cells accept 
the autophagy-induced signal and transfer it to the mammalian 
ra p a my c i n  t a r g e t  p ro t e i n  ( m TO R ) ;  a f t e r  i n d u c i n g  t h e 
dephosphorylation of the unc-51 like autophagy activating kinase 1 
(ULK1), it promotes ATG13, ATG101, FIP200 and ULK1 to form the 
ATG13- ATG101-ULK1-FIP200 complex thus to induce the extension 
of the autophagy membrane[15].

II. The formation of autophagosomes: The extension of the 
autophagy membrane is mainly regulated by two ubiquitin-like 
systems, class III phosphatidylinositol 3-kinase (PI3KC3), p150, 
and Beclin1 combine to form a complex, and then induce the 
autophagy membrane continues to extend. At the same time, ATG7 
activates ATG12, and is successively combined with ATG10 and 
ATG5, and then interacts with ATG16L1 and ATG5 to form the ATG5-
ATG12-ATG16L1 poly-complex, together to promote the growth of 
autophagosomes[16,17]. Subsequently, microtubule-associated protein 
1A/1B-light chain 3 (LC3) was processed into LC3-I by ATG4[18]; 
meanwhile, LC3-I combined with phosphatidylethanolamine to form 
LC3-II, thereby promoting the formation of autophagosomes. The 
latter is the second ubiquitin-like system. 

III. The transport of autophagosomes: After autophagy membrane 
extension and expansion is completed, autophagosome and 
lysosome fused to the formation of autolysosomes, This process 
may involve related SNARE proteins such as syntaxin 17 on the outer 
membrane of autophagy[19,20].

IV. The degradation of autophagosomes: The mTOR pathway is the 
key to the process of autophagy. After the lysosome degrades the 
substance in the cytoplasm, the degraded product is transported 
out of the lysosome for reuse by the cells. The release of lysosomal 
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nutrients will activate the mTOR signaling pathway, forming a 
negative feedback mechanism to avoid excessive cytoplasmic 
degradation. Activation will cause the lysosomes to extend out of the 
tubules. These tubules are often called “protolysosomes” and can 
continue to develop into mature lysosomes[21].

On one hand, the basal levels of autophagy are important for 
maintaining normal cellular homeostasis. On the other hand, even 
though the capacity for large-scale degradation is important for 
the function of autophagy, but it carries a certain risk because 
unregulated degradation of the cytoplasm is likely to be lethal[22].
 
Autophagy regulates bone homeostasis
Autophagy is of great significance to bone homeostasis. Bone is a 
dynamic organ, the activities and functions of osteocytes, osteoclasts 
and osteoblasts will directly affect the changes in bone mass and 
bone strength. Osteoblasts have mainly synthesized bone matrix 
while osteoclasts have a bone resorption effect, under normal 
circumstances, bone resorption and bone formation maintain 
a relative balance. Once the balance is broken, it will lead to 
osteoporosis, osteonecrosis or Paget’s disease, etc.[23] (Figure 3).

BMSC regeneration and controls osteoporosis development[25]. 
Older BMSCs are more likely to differentiate into adipocytes 
than to osteoblasts, and their autophagy activity is reduced, 
the use of autophagy inhibitor 3-methyladenine can reduce 
the differentiation and proliferation of BMSCs into osteoblasts 
while activator rapamycin reverses this process[26, 27]. Recently, 
it was shown that primary human BMSCs exhibit a high level of 
constitutive autophagy, with decreased BMSCs’ differentiation 
into osteoblasts[28]. In agreement with this observation, scientists 
have found that there is a high level of green fluorescent protein 
LC3 (GFP-LC3) puncta in primary BMSCs isolated from GFP-LC3 
transgenic mice, to the authors’ surprise; these GFP-LC3 puncta 
disappear after these cells are differentiated into osteoblast-
like cells[29]. These suggest that the level of autophagy in BMSCs 
is higher in osteoblasts. However, the role of the constitutive 
autophagy in BMSCs remains unclear.

Researchers have also found that when cells are hypoxic, peripheral 
reactive oxygen species is produced, high glucose cause apoptosis, 
and MSCs can produce exosomes through multiple pathways such 
as AMPK/mTOR, Akt/mTOR to enhance and enhance autophagy, 
and protect BMSC survival[30-32]. Induced mitochondria[33], vitamin C 
transporter 2[34] and insulin-like growth factor 1[35] may play key roles 
in BMSCs’ antioxidative stress-related autophagy and apoptosis.

Another discovery is that there are massive undegraded autophagic 
vesicles in undifferentiated mesenchymal stem cells, and the 
number of aggregated autophagic vesicles is reduced during the 
differentiation process of mesenchymal stem cells into osteoblasts[36]. 
This reminds us that the autophagic vesicles can supply the energy 
for the promotion of the differentiation of BMSCs.

Autophagy is inseparable from BMSC; however, the detailed 
biological functions of autophagy in BMSC such as maintenance, 
self-renewal, and differentiation are largely unknown. The detailed 
cellular and molecular mechanisms for the regulation of BMSCs 
during differentiation process demand a future investigation.

Autophagy and osteoblasts
Osteoblasts are mesenchymal-derived cells responsible for synthesis 
and secretion of bone matrix, and its subsequent mineralization[6]. 
The development and growth of bone are closely related to 
osteoblasts. Osteoblasts activate osteogenesis by secreting a large 
number of bone collagen matrix and some important cytokines, 
and through this series of factors coupled with the regulation 
of osteoclast to control the osteoclastogenesis maturation and 
activation[6]. In the process of bone formation, a portion of 
osteoblasts are differentiated into osteocytes and the other part is 
apoptotic[37].

Existing research supports the important role of autophagy in 
the differentiation and mineralization of osteoblasts. Studies 
have reported that there is a significantly increased autophagy 
in the early differentiation and the mineralization of the skull 
osteoblast, indicating that the autophagy and the differentiation and 
mineralization of osteoblast are closely related[38]. Liu et al.[39] found 
autophagic vesicles contain apatite-like structure in BMSCs after 
he observed the transmission process under electron microscopy, 

When the bone cells were in the condition of nutritional deficiency, 
hypoxia or infection and other adverse stimuli, a higher level of 
autophagy would be induced, to maintain the homeostasis of 
the bone system and prolong life. Therefore, a comprehensive 
understanding of the role of autophagy in bone and the mechanisms 
of autophagy in bone-related diseases will benefit for the exploration 
of the treatment therapies.

Autophagy and BMSCs 
BMSCs have the potential for self-renewal and multidirectional 
differentiation including adipose, bone, cartilage, and muscle[24], The 
osteoblast precursor cells required for bone tissue development, 
bone metabolism, and bone repair are all differentiated from 
BMSCs. Current data demonstrate that the autophagy activity of 
BMSCs affects their differentiation process, which in turn affects 
bone mass and even secondary bone. Autophagy regulates 

Note: Bone is mainly composed of osteoblasts, osteocytes, and osteoclasts, 
the dynamic balance of the three maintains bone homeostasis. The increase of 
autophagy can promote the differentiation of osteoblasts and osteoclasts. When 
the cells face adverse conditions such as oxidative stress, the increase of autophagy 
can promote the survival of BMSCs, osteoblasts, osteoclasts and osteocytes. 
BMSCs: Bone marrow mesenchymal stem cells.
Figure 3 ｜ Autophagy regulator bone homeostasis

综  述
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indicating that autophagic vesicles may be a mean of transportation 
during bone mineralization, autophagic vacuoles could be used as 
vehicles in osteoblasts to secrete apatite crystals. The deletion of 
FIP200 led to an abnormal increase in p62 expression and insufficient 
conversion of LC3-II, resulting in a defect in osteoblast function[39]. 
Besides, AMPK activation induced autophagy, as determined by 
the upregulation of LC3, increased autophagosome density and 
downregulation of p62[40]. Mice lacking the stress-inducing nuclear 
protein 1 showed an increase in bone mass. In nuclear protein 
1-deficient osteoblasts, the expression of ATG, autophagosome 
formation, and cell survival was up-regulated[41].

Properly increased autophagy levels cannot only protect BMSCs from 
oxidative stress damage but also promote the survival of osteoblasts. 
Oxidative stress destroys many cellular components of osteoblasts 
and is considered to be a key pathogenic factor for bone loss[42,43]. 
Silencing ATG5 can inhibit the proliferation and differentiation of 
osteoblasts, making them more vulnerable to oxidative stress[44]. 
Autophagy also can regulate the mechanical stimulation required for 
osteoblast differentiation[45] and reduce the inhibitory and apoptotic 
effects of glucocorticoids on osteoblasts[46]. The presence of estrogen 
can promote the differentiation and autophagy of osteoblasts by up-
regulating the expression of autophagy-related protein RAB3GAP1, 
thereby improving its survival rate and mineralization[47], probably 
through the ER-ERK-mTOR signaling pathway[48]. Besides, autophagy-
deficient osteoblasts can cause increased levels of oxidative stress 
and are potent in the production of osteoclasts[49].

It has been reported that the knockout of the UBA domain and 
the LIR site in the selective autophagy receptor (NbR1) gene of 
the ubiquitination substrate could inhibit the MAPK-p38 pathway, 
promoting the differentiation of BMSCs to osteoblast and significantly 
increasing bone mass [50]. It has been also reported that the 
expression of autophagy and bone mineral density were significantly 
increased when the receptor NbR1 gene was knocked out in an 
animal model[51]. In an in vitro study, scientists further found the 
osteoblast activity and the differentiation ability were significantly 
enhanced after the NbR1 gene was deleted. Furthermore, studies 
have found that P62 activity has increased when the NbR1 gene 
was knocked out. All of these studies demonstrated the NbR1 gene 
has a positive effect on the autophagy process and also regulates 
p38 mitogen-activated protein kinase MAPK in the osteoblast in a 
negative way[51]. Therefore, knocking out the NbR1 gene will inhibit 
autophagy and change the mechanism of osteoblast[52]. Similarly, 
ATG7 and bECN1 genes of a knockout rat can also significantly 
reduce osteogenic efficiency [49]. Knockout of ATG7 can cause 
bone loss in mice and cause stress in the endoplasmic reticulum, 
and phenylbutyrate acid released through the body can alleviate 
the decrease in bone formation capacity caused by endoplasmic 
reticulum stress[53,54].

Indeed, the specific mechanism of autophagy in the regulation 
differentiation of osteoblasts and its effect remain to be further 
confirmed.

Autophagy and osteocytes
Osteocytes are the main cells in bone tissue, which are the terminally 
differentiated cells buried in the bone matrix[55]. The upregulation of 

autophagy may accompany the transition from osteoblast to osteocyte 
to recycle organelles and preserve nutrients. Osteocytes make up 
over 95% of the bone cells in the adult skeleton[56]. Hocking found 
that autophagy totally exists in the differentiation of osteoblasts to 
osteocytes. Hocking et al.[57] found that the higher the differentiation 
degree of the osteocytes, the higher the level of autophagy. 

Osteocytes are mechanically sensitive cells that can make adaptive 
changes to external forces. Appropriate mechanical loading can 
improve bone strength and inhibit bone loss. King et al.[58] found 
that mammalian cells are highly sensitive to mechanical stress and 
can induce non-dependent mTOR pathways that cause temporary 
autophagy. Autophagic vesicles are observed in osteoblast-like 
MLO-Y4 cells after fluid shear stress, which causes an increase in LC3-
II and degradation of p62, indicating that fluid shear stress can induce 
protective autophagy of osteocytes, while mechanically induced 
autophagy is related to ATP metabolism and bone cell survival, 
suggesting that the use of drugs that regulate autophagy status in 
the clinic may enhance the survival of skeletal cells, providing new 
ideas for clinical prevention of bone aging-related diseases[59].

Autophagy of osteocytes is inversely related to oxidative stress and 
bone loss. Ovariectomy results in increased expression of Atg5, LC3, 
and Beclin1 in rats, while decreased expression of p62, and also 
reduces total antioxidant capacity, superoxide dismutase activity[60]. 
Autophagy can protect cells from the effects of oxidative stress, 
and give cells a certain ability to resist oxidative stress. Increased 
oxidative stress can also reduce the basic autophagy activity of bone 
cells, and vice versa. After moderate-level (1.4 mg/kg) pretreatment 
with glucocorticoids, osteocyte autophagy levels increased, and the 
ability to resist oxidative stress injury also increased, possibly by 
activating the MAPK/ERK signaling pathway[61].

Besides, EphrinB2 in bone cells will limit the accumulation of 
minerals. Bone cells lacking EphrinB2 can see more autophagosomes 
in vitro and in vivo. EphrinB2 may inhibit autophagy through the 
RhoA-ROCK signal[62]. EphrinB2 can also affect the mineralization 
function of osteoblasts[63].

Interestingly, ATG7 seems to change the appearance of bone cells. 
The loss of Atg7 disrupts the formation or maintenance of mouse 
bone cell networks. The bone cells of knockout mice are large, but the 
nucleus is small. The shape of the bone cell nucleus looks more round 
and eccentric. This may be the delay or prevention of Atg7 deletion. 
The number of cytoplasmic components associated with bone cell 
maturation[54]. Another study pointed out that periodic mechanical 
stretching will reduce the size and ovality of bone cells and increase 
the expression of LC3b and ATG7, indicating that autophagy 
upregulation will affect the spherical changes of bone cells[64].

Autophagy and osteoclasts
Osteoclasts lie in small cavities called Howship’s lacunae. By the 
way of secret a variety of proteolytic enzymes to form absorption 
lacunae, the osteoclast finally functions as bone resorption[65]. 
Osteoclasts secrete β3 integrin and produce actin rings, which are 
adsorbed on the surface of the bone, causing the surface of the 
bone to form a wrinkled edge, and secrete proteins such as tartrate-
resistant acid phosphatase and cathepsin K to acidify and absorb 

综  述
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bone. The complex folding of this edge is through the lysosome and 
periosteal fusion. The fusion process of secreted lysosomes and 
wrinkle edges is closely related to autophagy. Atg5, Atg7, Atg4B, and 
LC3 are important for the formation of wrinkle edges and osteoclasts 
for osteoclasts, and for bone resorption in vivo and in vitro important. 
kindlin3, which is an necessary adaptor protein in the podosome, 
will interact with LC3B and undergo autophagy-mediated protein 
degradation to regulating osteoclast migration[66]. Besides, Rab7, 
which is required for osteoclast function, is localized to the edges of 
the folds in a manner dependent on Atg5[67,68].

When osteoclasts are exposed to hypoxic stress, it will cause an 
increase in autophagy flux and increase the expression of ATG to 
reduce cellular stress[69]. Beclin-1 is required for RANKL-induced 
osteoclast differentiation[70], RANKL can induce Bcl-2 phosphorylation 
and dissociate Beclin1 from the Bcl-2-Beclin1 complex, JNK1 can 
block this process[71]. During in vitro osteoclast differentiation, 
autophagy is activated and Beclin1 is enhanced. In vivo experiments 
found that mice lacking Beclin1 showed impaired osteoclast function 
and increased cortical bone thickness[72]. It may be related to KLF2 
(kruppel-like factor 2) regulating Beclin1-mediated autophagy 
during osteoclast formation[73]. Under starvation conditions, GPCR 
kinase 2-interacting protein 1 induces disruption of Beclin1 and Bcl2 
binding and contributes to osteoclasts autophagy[74]. It was found 
that the transport receptor p62, which had an important regulatory 
effect on the formation of autophagosomes, mutated in Paget’s 
bone disease, promoting osteoclast proliferation as well as cell 
activity[75]. The p62 protein is involved in the mTOR nutrient-sensing 
signal transduction pathway in influencing the differentiation and 
function of OCs[76]. During RANKL-induced osteoclast differentiation, 
p62 is significantly down-regulated in the initial stage of osteoclast 
formation, and then gradually increases over time. The expression of 
p62 is related to the ratio of LC3-II/LC3-I, This phenomenon may be 
caused by autophagy activation and plays an important role in F-actin 
loop formation[77].

In addition to Beclin1 and p62 being closely related to osteoclasts, 
IL-17A stimulates osteoclast differentiation and bone resorption 
and may promote autophagy activity by activating the RANKL-JNK 
pathway during osteoclast formation[78,79]. JNK1-mediated autophagy 
could promote RANKL-induced osteoclastogenesis via enhancing 
TRAF3 degradation, and JNK1 also could prevent osteoclast 
precursors apoptosis through autophagy-TRAF3 signaling[80]. Pro-
inflammatory cytokine tumor necrosis factor activates osteoclasts 
in rheumatoid arthritis to initiate autophagy, and then promotes 
osteoclasts to perform bone resorption in the body. Chloroquine 
and hydroxychloroquine can increase The pH value that can inhibit 
autophagy and damage protein degradation in autolysosomes, which 
may explain the mechanism of chloroquine and hydroxychloroquine 
in preventing bone erosion[81]. It may be related to lysosomal pH 
regulating mTOR activity in osteoclasts[82]. 

However, some studies have reached the opposite conclusion. 
For example, OPG can enhance autophagy and inhibit osteoclast 
differentiation and bone resorption through the AMPK/mTOR/
p70S6K signaling pathway in vitro[83]. In vitro culture of osteoclasts 
has found that the use of rapamycin can inhibit the reduction of cells 
and inhibit bone loss[84].

CONCLUSION
Autophagy is a common phenomenon of life, widely involved 
in the physiological and pathological process of a variety of 
organs. Autophagy is closely related to regulating the function of 
mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. 
It maintains the balance between mineralization and resorption 
which keeps the bone homeostasis. Appropriate autophagic inducers 
could also benefit the bone remodeling. Abnormal autophagy will 
lead to disruption of bone balance and will lead to diseases such 
as osteoporosis. This also suggests that we can prevent or treat 
bone-related diseases by regulating the level of autophagy, and by 
exploring the deeper mechanism of autophagy in bone metabolism, 
more possible treatments for the bone-related disease will become a 
reality soon.
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文题释义：

自噬：当细胞面临外部环境压力(例如缺乏

营养、缺氧、损伤等)时，它们可以使用溶

酶体依赖性途径来破坏细胞，回收细胞器、

有机物以满足自己的需求，这种现象称为自

噬。

骨组织：骨组织的细胞成分主要包括骨髓间

充质干细胞、成骨细胞、骨细胞和破骨细

胞。成骨细胞主要合成骨基质，破骨细胞具

有骨吸收功能，生理状态下，骨组织的生成

和吸收处于动态平衡中。

摘要

背景：自噬对维持细胞稳态和应激敏感性有

重要作用，作为细胞清除受损细胞器并实现

细胞成分再循环的一种重要方式，在骨代谢

中发挥着不可或缺的作用。

目的：对自噬对骨髓间充质干细胞、成骨细

胞、骨细胞以及破骨细胞的作用机制进行综

述，以明确自噬在调节和维持骨组织细胞活

性和功能等方面的意义。

方法：以关键词“autophagy；bone marrow 
mesenchymal stem cells；osteoblasts；
o ste o c y te s；o ste o c l a st s”计算机检索

PubMed数据库与骨细胞自噬相关的研究。

结果与结论：最终纳入84篇文献。发现自

噬在骨代谢具有重要作用。自噬参与保持矿

化和吸收的平衡，继而维持骨稳态。适当的

自噬诱导剂也可能有益于骨骼重塑。自噬异

常会导致骨骼平衡紊乱，导致骨质疏松等疾

病。通过调节自噬维持骨稳态代谢平衡，可

有助于预防或治疗骨相关疾病。

关键词：自噬；骨髓间充质干细胞；成骨细

胞；骨细胞；破骨细胞；骨稳态；骨矿化；

骨吸收
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文章特点—

△自噬作为一种选择性清除

受损细胞器以实现细胞成

分循环的方式，对维持细

胞稳态和应激具有重要的

作用；

△自噬与骨细胞和骨代谢密

切相关。文章重点关注自

噬在调节骨髓间充质干细

胞、成骨细胞以及成骨细

胞和破骨细胞之间的骨相

关细胞活性和功能中的作

用和可能机制。
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  分化
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