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Abstract

BACKGROUND: Previous studies have confirmed that 6-hydroxydopamine is capable to increase
the expression of divalent metal transporter-1 and reduce the expression of ferroportin-1 in the
neurons and microglia, which may lead to iron deposition in the substantia nigra after Parkinson’s
disease. However, it is unclear whether 6-hydroxydopamine can play diverse roles in astrocytes.
OBJECTIVE: To observe the effects of 6-hydroxydopamine on the expression of divalent metal
transporter-1 and ferroportin-1 in rat C6 glioma cell lines.

METHODS: C6 glioma cell lines from rats were cultured in 10 ymol/L 6-hydroxydopamine for 24
hours. Then, protein expressions of divalent metal transporter-1 and ferroportiner-1 were measured

by western blot method.

RESULTS AND CONCLUSION: The protein expressions of divalent metal transporter-1 and
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ferroportin-1 in C6 glioma cell lines were increased by 2.5 times (P < 0.01) and 1 time (P < 0.05),

respectively, after treatment with 6-hydroxydopamine. These findings indicate that

6-hydroxydopamine can promote iron transport rate
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in astrocytes by increasing both divalent metal P ¢

transporter-1 and ferroportin-1 expressions, and astrocytes has a different response to

6-hydroxydopamine from neurons and microglia.
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INTRODUCTION

Parkinson’s disease is a progressive
neurodegenerative disorder characterized
by the loss of dopaminergic neurons in the
substantia nigra, giving rise to dopamine
depletion in the striatum, which occurs
mainly in the middle-aged and elderly with
the clinical manifestations of akinesia,
muscular rigidity, resting tremor and
postural reflex disorder™ 2. Although
heredity, environment and oxidative stress
play a certain role, the exact pathogenesis
of Parkinson’s disease is not fully
understood.

Iron is one of the essential trace elements
in the human body, which is widely
involved in the body metabolic processes.
The iron as an essential component
involved in the synthesis of myelin sheath
and neurotransmitters is particularly
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important for the brain. Existing evidence
has shown that during the brain
development, iron deficiency leads to
irreversible behavioral and cognitive
disorders in children, and excessive iron
can cause damage to nerve cells, and
thereby becomes one of the initial
reasons for neurodegenerative diseases™.
In this century, excessive iron-reduced
damage to dopaminergic neurons in the
substantia nigra-corpus striatum system is
becoming an issue of attentions. Due to
its cytotoxicity and its ability to promote
hydroxyl radical production, iron has a
non-negligible role in the pathogenesis of
Parkinson’s disease® .. It is confirmed
that iron accumulation is involved in the
pathogenesis of Parkinson’s disease.
Selective deposition of irons exists in the
substantia nigra of Parkinson’s disease
patients and animal models. We can
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observe an increase in iron content in the substantia
nigra of patients at early stage of Parkinson’s disease,
and moreover, the iron content is correlated with the
progression of Parkinson’s disease®?.

Studies have shown that an abnormal increase in iron
content in the brain may be due to some iron
transporters out of control. Divalent metal
transporter-1 (DMT1) is the major iron into protein
widely expressed in the brain™®*?, which has a similar
structure to Nramp1 that consists of 12
transmembrane domains (Figure 1)[13]. DMT1 is
widely expressed in the brain and highly expressed in
the iron-enriched substantia nigra. Additionally, DMTI
is also highly expressed in cells with demands for a lot
of irons. Excessive iron deposition is likely to cause a
series of pathological changes, and thereby destroy
nerve cells, eventually leading to a variety of brain
diseases, such as neurodegenerative diseases
(including Parkinson’s disease and Alzheimer’s
disease™***.. It has been reported that there is an
excessive expression of DMTI in the substantia nigra
neurons of Parkinson’s disease patients, and DMT1
excessive expression may cause selective
accumulation of irons and in turn result in an increase

of reactive oxygen species, eventually leading to
[16-18]

death of neurons

Figure 1 Predicted cartoon structure of divalent metal transporter-12

Ferroportin-1 (FPN1) is currently the only known
transmembrane protein for cellular iron efflux, which is
also known as Fe-regulated transport protein 1
(IREG1) or metal transport protein 1 (MTPl)[lQ]. FPN1
consists of 571 amino acids and has at least 10
transmembrane domains (Figure 2), with a relative
molecular mass of about 62 000%%. Northernblot
analysis shows that FPN1 is widely distributed in the
body tissues, such as the small intestine, placenta,
spleen, liver, kidney, heart, muscle, lung and brain.
Brain studies in rats have shown that FPN1 is highly
expressed in the hippocampus, cerebral cortex,
cerebellum, thalamus and striatum, especially in the
cortical pyramidal neurons and the apical dendrites. In
addition, FPN1 is often found to highly express in the
hippocampal pyramidal cells and granule cells as well
as in the habenular nucleus. As previously reported,
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FPNL1 is considered to be involved in iron deposition in

the substantia nigra of Parkinson’s disease by

reducing the expression®®".

FYCaP TSVV
\Q
N
b . 540 554an  56Tas Oaz
n : i 7
Ten transmembrane domains | PDZ target sequencing |

Sequencing of the NADP/adenine binding site |

Figure 2 FPN1 Protein structure®®

6-Hydroxydopamine (6-OHDA) is a widely used
neurotoxic agent that can selectively damage
dopaminergic neurons in vivo and in vitro. The toxicity
of 6-OHDA is generated through reactive oxygen
species-mediated oxidative damage to
mitochondria®. In our previous studies, we have
demonstrated that 6-OHDA can increase DMT1 but
reduce FPN1 in neurons and microglia®*?*. However,
it is unclear whether 6-OHDA can play different roles
in astrocytes. In this study, we aimed to investigate the
changes of both DMT1 and FPN1 expressions in the
C6 glioma cell lines after treatment with 10 pmol/L
6-OHDA for 24 hours.

MATERIALS AND METHODS
Design
In vitro cytological study.

Time and setting

Experiments were completed at the National Key
Laboratory of Physiology, Qingdao University
Medical School, China in July 2015.

Materials

Rat C6 glioma cell lines were provided by Shanghai
Cell Bank of the Chinese Academy of Sciences.
Unless otherwise stated, all chemicals were
purchased from Sigma Chemical Co. (St. Louis., MO,
USA). The primary antibodies against FPN1 and
DMT1 were separately from the Sigma Chemical Co.
and the Alpha Diagnostic (ADI, San Antonio, TX,
USA). Dulbecco’s modified Eagle’s medium (DMEM)
was from Gibco (Grand Island, NY, USA).

Methods
Cell cultures
C6 cells were cultured in DMEM supplemented with
10% fetal bovine serum, 100 U/mL penicillin, 200 pg/mL
streptomycin at 37 “C, in a humid atmosphere of 5%
110180
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Figure 3 Protein level of DMT1 in 6-OHDA-treated C6 glioma cell
lines

Note: (A) DMT1 expression was detected by western blot assay,
which at 64 000 were higher in the 6-OHDA group than in the
control group. (B) The relative protein level of DMT1 was
significantly higher in the 6-OHDA group than the control group. P <
0.01, vs. control group. DMT1: Divalent metal transporter-1;
6-OHDA: 6-hydroxydopamine.

CO, and 95% air. For experiments, cells at
70%-80% confluence were sub-cultured and
seeded at a density of 10° cells/cm?.

Western blot analysis

Cells were treated with 10 ymol/L 6-OHDA for 24
hours and then collected after supernatant removal.
After three washes with TBST, cells were digested
directly on culture plates with RIPA lysis buffer

(50 mmol/L Tris-HCI, 150 mmol/L NaCl, 1%
Nonidet-40, 0.5% sodium deoxycholate, 1 mmol/L
ethylene diamine tetraacetie acid, 1 mmol/L
phenylmethylsulfonyl fluoride) with protease
inhibitors (pepstatin 1g/mL, aprotinin 1g/mL,
leupeptin 1g/mL) for 30 minutes on ice. The
insoluble material was removed by centrifugation
(1 2 000 r/min, 20 minutes, 4 °C). 30 g total proteins
were extracted and separated using 10% sodium
dodecyl sulfate-polyacrylamide gels and then
transferred to polyvinylidene fluoride membranes.
Blots were probed with anti-DMT1 antibody (1:800,
ADI) and anti-FPN1 antibody (1:800, Sigma). Blots
were also probed with anti-B-actin monoclonal
antibody (1:10 000, Sigma) as a loading control.
Cross-reactivity was visualized using UVP gel
imaging system and photographed. The DMT1 and
FPN1 expressions were represented as the ratio of
DMT1/B-actin and FPN1/B-actin. The experiment
was repeated six times.

Main outcome measures
Changes in DMT1 and FPN1 expressions after
6-OHDA intervention.
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Figure 4  Protein level of FPN1 in 6-OHDA-treated C6 glioma cell

lines

Note: (A) FPN1 expression was detected by western blot assay,
which at 68 000 were higher in the 6-OHDA group than in the
control group. (B) The relative protein level of FPN1 was
significantly higher in the 6-OHDA group than the control group.
P < 0.05, vs. control group. FPN1: Ferroportin-1; 6-OHDA:
6-hydroxydopamine.

Statistical analysis

Data are presented as mean+tSEM and were
statistically analyzed using SPSS 17.0 software. The
intergroup comparisons were made by one-way
analysis of variance and Tukey test. P < 0.05 and

P < 0.01 were considered statistically or greatly
statistically significant.

RESULTS

Expression of DMTI protein in 6-OHDA-treated
C6 glioma cell lines

After treated with 10 pmol/L 6-OHDA for 24 hours,
there was a 2.5-fold increase in DMT1 protein level
in C6 glioma cell lines (P < 0.01; Figure 3).

Expression of FPN1 protein in 6-OHDA-treated
C6 glioma cell lines

At 24 hours after 10 ymol/L 6-OHDA treatment,
there was a 1-fold increase in FPN1 protein level in
C6 glioma cell lines (P < 0.05; Figure 4).

DISCUSSION

Astrocytes as the major glial cell type in the central
nervous system are widely distributed in the brain gray
and white matters, and have multiple functions, including
cell support during central nervous system development.
Astrocytes participate in the various physiological or
pathological processes, including the formation and
maintenance of blood-brain barrier, neuronal
development and synaptic remodeling, glutamate
metabolism, and stable maintenance of extracellular K*,
and are generally accepted as a principle contributor for
the uptake of a variety of nutrients such as transition
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metals crossing the blood-brain barrier®?, Additionally,
astrocytes have a close relationship with central nervous
system inflammation and immunoreactions®>". DMT1
is mainly expressed in the end feet of astrocytes around
the blood capillaries, indicating a major role of astrocytes
in brain iron uptake. These cells have a strong ability to
accumulate irons and have a higher tolerance to iron.
Iron overloading can trigger neuronal cell and microglia
death, and however, activate astrocyte proliferation®".
Thus, astrocytes play an important role in regulating
brain iron homeostasis and protecting other brain cells
from iron-mediated oxidative stress.

6-OHDA, a norepinephrine homolog, can create
oxidative stress through the production of free radicals
and reactive oxygen to destroy dopaminergic neurons
in the substantia nigra, and damage dopamine
synthesis in the substantia nigra and the transport
path to the striatum, thereby resulting in
catecholamine and acetylcholine neurotransmitter
imbalance and causing a series of symptom and
pathological changes similar to human Parkinson’s
disease, such as unilateral rotation. 6-OHDA is now
commonly used to establish animal models of
Parkinson’s disease and cell model of Parkinson’s
disease nerve gas, which is a kind of selective
neurotoxins. Its toxicity on the one hand can happen
outside the cells from oxidation, intracellular H,O, and
OHe indirect oxidative stress; on the other hand,
6-OHDA can directly enter into the cells by the
dopamine transporter uptake and start to play a toxic
role of oxidative stress®**3. In the 6-OHDA induced
Parkinson’ disease model and PD patients, glial cells
in the substantia nigra pars compacta appear to have
obvious responses. During the generation process,
activated astrocytes and DA nerve endings produce a
large number of “cross-talk”, and reactive astrocytes
in DA neuron degeneration play an important role.

Recent studies have shown that brain iron metabolism
can cause a lot of brain diseases®®”. Iron is found a
higher expression with the presence of oxidative
stress in the brain basal ganglia and senile plaques of
Alzheimer’s disease and Parkinson’s disease
patients®>*®. Increase in iron concentration in the
brain can lead to iron oxidative stress and deficiency
of antioxidant protection, which may be one reason for
neuronal degenerative death. In recent years, studies
have shown that the degree of oxidative damage in
the brain tissue is directly related to the local brain iron,
and iron-induced oxidative damage has been
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increasingly attracting attentions®®" . Accumulating
evidence has demonstrated that the generation of
reactive oxygen can be involved in the regulation of iron
and subsequently regulate the iron-related proteins. Iron
deposition in the substantia nigra is actively involved in
the pathogenesis of Parkinson’s disease.

Our previous studies have shown that increased
expression of DMT1 and decreased expression of FPN1
can account for the iron deposition in both neurons and
microglia with 6-OHDA treatment®?* 3%, |n this study,
we found that both DMT1 and FPN1 expressions were
increased in C6 glioma cell lines treated with 10 pmol/L
6-OHDA for 24 hours. Experimental findings indicate that
6-OHDA promotes iron transport rate in astrocytes by
increasing both DMT1 and FPN1 expressions, and
astrocytes has a different response compared with
neurons and microglia.
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