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Self-adaptive regularized super-resolution reconstruction
of magnetic resonance images*

Xu Qi-fei', Zhang Huai-guo?, Wang Hou-jun', Wang Jian-hua'

Abstract

BACKGROUND: Super-resolution reconstruction has been extensively studied and used in many fields, such as medical
diagnostics, military surveillance, frame freeze in video, and remote sensing.

OBJECTIVE: In order to obtain high-resolution magnetic resonance images, gradient magnetic field is required and the
signal-to-noise will be reduced due to the decrease in voxel size with traditional scan. The present study used a self-adaptive
regularized super-resolution reconstruction algorithm to acquire high-resolution magnetic resonance images from four

half-pixel-shifted low resolution images.

METHODS: The least squares algorithm was used as a cost function. The derivative of the cost function was calculated to obtain
an iterative formula of super-resolution reconstruction. In the process of iterative process, the parameter and step size of image

resolution were regularized.

RESULTS AND CONCLUSION: The new regularization parameter makes cost function of the new algorithm convex within the
definition region. The piori information is involved in the regularization parameter that can improve the high-frequency
components of the restored image. As shown from the results obtained in the phantom imaging, the proposed super-resolution
technique can improve the resolution of magnetic resonance image.

INTRODUCTION

Super-resolution (SR) reconstruction has been
extensively studied and used in many fields, such as
medical diagnostics, military surveillance, frame
freeze in video, and remote sensing. In many imaging
systems, since the low resolution (LR) images
observed by detector arrays will be degraded by
aliasing effects, some visual charge coupled device
(CCD) cameras suffer from under-sampling and LR
images also can be blurred by relative motion
between sensors and objects, it is essential to
develop an effective image restoration algorithm. The
goal of SR is to reconstruct a un-aliased high
resolution (HR) image from multiple aliased LR
images. This is possible if there is sub-pixel motion
between the acquired LR frames. Tsai and Huang'"
first addressed SR reconstruction algorithm in the
frequency domain. Their algorithm based on the shift
property of the Fourier transform makes explicit use of
the aliasing relationship under the assumption that the
SR image is band-limited. Because their method
operates on the noise-free data, Kim and Su'?
proposed an extension of Tsai-Huang’s algorithm for a
blurred and noisy image, resulting in a weighted least
squares algorithm. Although the frequency domain
methods are theoretically simple and computationally
cheap, they are restricted to global translational
motion between LR frames and linear space invariant
image blur, limiting their use. So the frequency
domain approach has not been the active research
direction. Resolution techniques presented in the
literature operate in the spatial domain. Typically, the
projection onto convex set algorithm accounting for
the blur caused by the LR sensor geometry was first
suggested by Stark and Oskoui® for SR
reconstruction. Patti and Altunbasak™ extended the
Stark-Oskoui’s algorithm which accounted for space
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varying blur and used block matching or phase
correlation to estimate sub-pixel motion. The
POCS-based algorithms have the advantage of
simplicity and utilizing the powerful spatial domain
observation model. They also allow a convenient
inclusion of a priori information. The disadvantages of
these methods are nonuniqueness of solution, slow
convergence, and a high computational cost™®.

There also appeared stochastic methods for SR image
reconstruction®®. A maximum a posteriori (MAP)
method used to reconstruct HR images from a
sequence of LR images was from Schultz and
Stevenson'®, which used specific Huber-Markov-Gibbs
model for a prior SR image model, resulting in a
constrained optimization problem with a unique
minimum. This was extended by Hardie et al”, which
sought to minimize a MAP cost function with respect to
the HR image and the registration parameters
simultaneously using a cyclic coordinate-descent
optimization procedure. Tom and Katsaggelos™™
proposed the maximum likelihood (ML) estimation
applied to the SR reconstruction. The ML estimation is
a special case of MAP estimation with no prior term.
The ML technique utilizes the
expectation-maximization (EM) algorithm to estimate
the sub-pixel shifts, the noise variances of each image
and the HR image simultaneously.

Recently, regularized SR reconstruction algorithms are
most comprehensive. Kang and Katsaggelos!®
proposed the use of a regularization function instead
of a constant regularization parameter, allowing for the
simultaneous estimation of the regularization
parameters and restoration of the degraded images
without any prior knowledge about the original images.
It can greatly improve the quality of image restoration
when the Gaussian noise is the only noise source
added to the LR images. But besides additive
Gaussian noise, the LR images include blur noise and
registration noise. Therefore, taking into account the
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differences of noise levels and components of per frame, He
and Kondi'"” proposed a channel weight coefficient regularized
SR reconstruction algorithm. The channel weight coefficient is
adjusted according to different noise level of each frame,
working as the cross-channel fidelity. So this method is very
efficient for the LR images including different noises. However,
it needs to compute the value of the channel weight coefficient
to per frame at each iterative step. So it costs a high
computation at each iterative step, resulting in a slow
convergence of the algorithm.

components, the following desirable properties are necessary
for the regularization parameter, i) A«(Q) is proportional to
ly,-D.gl? which controls fidelity of data, ii) A«(g) is
inversely proportional to || Fg ||?, which not only enhances the
high frequency of the data but also smoothes the solution, iii)
A(g)> 0. Based on the properties described above, we define
the regularization as

OBSERVATION MODEL AND COST
FUNCTION

We adopted the least squares algorithm as a cost function.
Taking the derivative of the cost function, we obtained an
iterative formula of SR reconstruction. In the process of
iterative, regularization parameter and step size are modified
along with image restoration.

Observation model

The observed LR images result from warping, blurring, motion
and sub-sampling operators performed on the ideal
un-degraded image g. The observation model is then ' 5 %™
y=Dg+n, where the vector g, y and n represent the original
image, the observed degrade image, and the additive noise in
the observed image, respectively. The matrix D denotes a
space-invariant or variant linear distortion.

Considering p LR images, each of size N1xN,, the
observation model for each frame can be written as
yi=Dyg+ni or y = SBiMig + ni(k =1,2,..., p) where yx is the
lexicographically ordered kth LR image. Parameters /1 and I,
represent the down-sampling factors in the horizontal and
vertical directions, respectively. The ideal HR image g is of
size N = 1N1x[;N,. S is the N1N2xN sub-sampling matrix, By is
the NxN blurring matrix, and M is the NxN motion matrix.

Cost function

Considering each low resolution image may experience a
different degradation process, a different channel-weighted
cost function has been proposed !'® 2

CO=YwCih@g

where the individual cost function is

ClA(9).914ly ~D g I? +A @) I Fg I ()

wg is the positive weight coefficient for frame k. F is a
high-pass filter and is used to penalize discontinuities in the
final solution. represents a L-norm. A(g) is regularization
parameters, whith control the tradeoff between fidelity to the
data as expressed by residual form || y, -D,g ||?and the
smoothness norm |l F9 I . || ¥, —D,g |I? contains three
possible sources: PSF blur noise, registration noise, and
additive Gaussian noise.

PROPOSED ALGORITHM

In order to control the noise level of sub-pixel and improve
super-resolution image reconstruction of the high-frequency
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lly, —Dgll’ 3
Mg)=y e _ZI Il (3)
where y is a minute constant, we set y < 0.001; o prevents the
denominator from becoming zero.

Taking the (3) to (1), we can yield

CUA@).a1= 31y, -D,g1F + LI 21y (4
91= 2B IFg I +o

From the formula described above, as we known ||y, ~D,g I’
is convex. We consider that the cost function C[A(g), g] is also
convex, which can reach a global minimum. Consequently, it
is not necessary to choose the initial values in the iterative
under special conditions. We just take out a LR image at
random as the initial condition in the iterative.

The cost function is convex, which satisfies ¥,C(g)=0

when it has a global minimum. Then, we take the derivative of
the cost function with respect to g.

14
V,C(g)= 22 2 {[DkTDk +A (9)F"Flg - DkTyk} (3)
k=1
We can suppose that the solution of the HR image is
2 T T 2 2 T
> o{D/ D+ AQF Flg+l FgIF}=Y oDy, (€
k=1 k=1

Then we can use iterative method!'%

P
gm =gi 7£i(g1)zwk[DkT(DkgAi 7yk)+Ak(gAi)FTFgAi] (7)
k=1

where €i(g) is the step size of the ith iteration. For the different
source for the residual noise of the LR images, so we use
channel weight wx in the paper, o, =R,./|ly, - D.g |’ where
R..e = p/(ZZ:ﬂ/ [l ¥, ~D,g|?) - In order to seek the optimal
step size, substituting (9) into (1), we can get

C(di)=C(g; ~&(9,)V,C(9)) 8)
So taking the derivative in (8) with respect to &(g;) and

supposing the derivative equals to zero. Solving for €;(g;) >0
yields, after some manipulations, we can get the formula,

Zp:[vgc(gi)]T[DkT(Déi 7.yk)+Ak(gAi)FTFgAi]
€(9,)=" )
Z[II D,V,C(G)IFF +A(G) 1| FV,C(g) ]

By simplifying the formula (12), we know ei(g}f) > 0.

EXPERIMENT RESULTS AND DISCUSSION

To evidence the advantage of the proposed algorithm,
pixels MR images which were intercepted from real data for
LR images, in which line-width is 0.9 mm, 0.8 mm, 0.7 mm,
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0.6 mm, 0.5 mm for each group lines. Parameters of the real
data:
Pixel spacing, 0.859 4, 0.859 4; slice thickness, 2.000; width
and height, 256, 256;
Equipment, Simens MR Header; FoV, 220*220.
The detailed information of phantom can be obtained at
http://www.phantomlab.com/.
Registration parameters for the four frames were global
translations [0, 0], [0, 0.5], [0.5, O], [0.5, 0.5]. HR images were
created from four LR images by up-sampling with a ratio of
I1=hL=2. The PSF was corrupted by AWN with support size
15x15 and used to blur images. We set the standard
deviationo=0.2 through estimated the noise in experiment,
and set y=10°.
We selected 2-D Laplacian for F, that is *'!

1 for i=j
Ca {70.25, for i, j : g, is a cardinal neighbor of g,

(10)

The criterion || g,,,-g,11/11g, ||<10" was used for terminating
the iteration.

Our experiment was implemented in MATLAB on a PC with
Intel Pentium 4, 3.0 GHz processor and 512 RAM (Figure 1).

Figure 1 al-a4 are low resolution images; b is reconstructed
image. b1 is based on He’ salgorithm, b2 is based on
Lee’ salgorithm, and b3 is based on our algorithm
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Figure 2 a (He’s algorithm), b (Lee’s algorithm) and c (our
algorithm) show the profile of the part of reconstruction
images

As shown in Figure 2, a is the profile of the part of low resolution
image; b and c are the profile of the part of reconstruction
images. We can discern 3, 4, 4, 5, 5 peaks for each group in
He’s algorithm respectively in Figure 2 (b).

Figure 2 (b) shows 3, 4, 5, 5, 5 peaks for each group
reconstructed by Lee’s algorithm. The new algorithm are shown
in Figure 2 (c), 4, 4, 5, 5, 5 peaks for each group can be
distinguished, respectively.

Elapsed time is 0.944 842, 1.886 998, and 1.449 048 seconds
for He's, Lee’s and our algorithm, respectively. The number of
iterations is 29, 43, and 36 for He’s, Lee’s and our algorithm,
respectively.

From the data and discussion above, we know that the elapsed
time is almost equal to Lee, but the quality of the image has
preponderance.

CONCLUSION

We proposed an adaptive SR reconstruction algorithm, which
introduces adaptive regularization function in the cost function
and uses the adaptive optimization step size with the
progress of the iterative process. On one hand, the
man-made factor is reduced in the reconstruction process of
the image, the high frequency components are restored well
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and the quality of the image is improved. On the other hand,
the rate of convergence is greatly improved, which is a big
advancement to reach the goal of real-time reconstruction in
theory. Therefore, in order to achieve real-time reconstruction
and greatly improve the quality of the image, step size will be
further optimized, and at the same time regularization function
will be also improved.
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