Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (16): 2472-2478.doi: 10.3969/j.issn.2095-4344.3150
Previous Articles Next Articles
Chen Siyu1, Li Yannan1, Xie Liying1, Liu Siqi1, Fan Yurong2, Fang Changxing2, Zhang Xin2, Quan Jiayu2, Zuo Lin1
Received:
2020-03-09
Revised:
2020-03-14
Accepted:
2020-04-22
Online:
2021-06-08
Published:
2021-01-07
Contact:
Zuo Lin, MD, Associate professor, Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
About author:
Chen Siyu, Master candidate, Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
Supported by:
CLC Number:
Chen Siyu, Li Yannan, Xie Liying, Liu Siqi, Fan Yurong, Fang Changxing, Zhang Xin, Quan Jiayu, Zuo Lin. Thermosensitive chitosan-collagen composite hydrogel loaded with basic fibroblast growth factor retards ventricular remodeling after myocardial infarction in mice[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(16): 2472-2478.
2.3 水凝胶中bFGF释放效率测定 bFGF在单纯壳聚糖水凝胶和复合水凝胶中的释放效率如图3所示。显而易见,这两种载药系统的释放曲线存在明显差异。早期(0-7 d),bFGF在两种体系中的释放速率迅速,第7天时,单纯壳聚糖水凝胶和复合水凝胶释放bFGF已达到(53.72±3.19)%和(59.05±2.76)%。中期(7-21 d),两种体系中bFGF的释放速率相对早期明显减慢,且各个时间点下两组均具有显著性差异(P < 0.05)。后期(21-42 d),复合水凝胶释放bFGF的总量基本保持稳定,而单纯壳聚糖水凝胶的释放量缓慢增加。结果表明相较于单纯壳聚糖水凝胶,复合水凝胶体系可以有效促进负载因子bFGF的稳定释放。 "
2.5 心肌梗死小鼠心功能测定 采用超声心动图比较各组缺血前及心肌梗死后第1,7,14,28天的心率和心脏功能变化,检测结果如图5所示。心肌梗死后的第1,7,14天,实验组小鼠左心室射血分数和左心室短轴缩短率均显著高于对照组和空白组(P < 0.05,P < 0.01,P < 0.001);心肌梗死后28 d时,实验组小鼠左心室射血分数和左心室短轴缩短率分别为(64.0±6.1)%和(30.0±2.2)%,显著高于对照组的(59.0±4.5)%和(24.0±1.5)%和空白组的(36.0±4.7)%和(19.0±2.5)%(P < 0.05,P < 0.01,P < 0.001)。各个时间点3组小鼠的心率总体维持在430次/min左右,组间比较差异无显著性意义(P > 0.05)。总体上的超声心动图结果显示:实验组心肌梗死模型小鼠的心功能明显改善,心脏功能指标在28 d内倾向于向正常心脏基线偏移。 "
[1] BENJAMIN EJ, VIRANI SS, CALLAWAY CW, et al. Heart disease and stroke statistics-2018 update:a report from the American heart association.Circulation. 2018;137(12):e67-e492. [2] GONZÁLEZ A, SCHELBERT EB, DÍEZ J, et al. Myocardial interstitial fibrosis in heart failure:biological and translational perspectives. Am Coll Cardiol. 2018;71(15):1696-1706. [3] BLACKBURN NJ, SOFRENOVIC T, KURAITIS D, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015;39:182-192. [4] YANAMANDALA M, ZHU W, GARRY DJ, et al. Overcoming the roadblocks to cardiac cell therapy using tissue engineering. J Am Coll Cardiol. 2017; 70(6):766-775. [5] FUJITA B, ZIMMERMANN WH. Myocardial tissue engineering strategies for heart repair: current state of the art. Interact Cardiovasc Thorac Surg. 2018;27(6):916-920. [6] SALUDAS L, PASCUAL-GIL S, PRÓSPER F, et al. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523(2): 454-475. [7] SARKAR B, NGUYEN PK, GAO W, et al. Angiogenic self-assembling peptide scaffolds for functional tissue regeneration. Biomacromolecules. 2018; 19(9):3597-3611. [8] ALKAN M, MADANIEH R, SHAH NN, et al. Regenerative stem cell therapy optimization via tissue engineering in heart failure with reduced ejection fraction. Cardiovasc Eng Technol. 2017;8(4):515-526. [9] PARK J, ANDERSON CW, SEWANAN LR, et al. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomater. 2019;S1742-7061(19): 30695-30696. [10] JOHNSON TA, SINGLA DK. Therapeutic application of adult stem cells in the heart. Methods Mol Biol. 2017;1553:249-264. [11] ZHANG S, LIU Y, ZHANG X, et al. Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization.Theranostics. 2018;8(19):5348-5361. [12] XUE H, HU L, XIONG Y, et al. Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydr Polym. 2019;226:115302. [13] JACKMAN C, LI H, BURSAC N. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Acta Biomater. 2018;78:98-110. [14] XU B, LI Y, DENG B, et al. Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Exp Ther Med. 2017;13(2):588-594. [15] SHU Y, HAO T, YAO F, et al. RoY- peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces. 2015;7(12):6505-6517. [16] SHI C, ZHAO Y, YANG Y, et al. Collagen-binding VEGF targeting the cardiac extracellular matrix promotes recovery in porcine chronic myocardial infarction. Biomater Sci. 2018;6(2):356-363. [17] ZHU H, JIANG X, LI X, et al. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction.Heart Vessels. 2016; 31(6):963-975. [18] KRETZSCHMAR K, POST Y, BANNIER-HÉLAOUËT M, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA. 2018;115(52):E12245-E12254. [19] TANG J, LI Y, HUANG X, et al. Fate mapping of Sca1(+) cardiac progenitor cells in the adult mouse heart. Circulation. 2018;138(25):2967-2969. [20] WU Q, ZHAN J, PU S, et al. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells. Oncotarget. 2017;8(1):29-41. [21] LIU H, PAUL C, XU M. Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Methods Mol Biol. 2017;1553: 293-304. [22] WHITE SL, HIRTH R, MAHÍLLO B, et al. The global diffusion of organ transplantation: trends, drivers and policy implications. Bull World Health Organ. 2014;92(11):826-835. [23] JUMABAY M, MATSUMOTO T, YOKOYAMA S, et al. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. Mol Cell Cardiol. 2009;47(5):565-575. [24] HONG KU, BOLLI R. Cardiac stem cell therapy for cardiac repair.Curr Treat Options Cardiovasc Med. 2014;16(7):324. [25] CHAUDHURI R, RAMACHANDRAN M, MOHARIL P, et al. Biomaterials and cells for cardiac tissue engineering:Current choices. Mater Sci Eng C Mater Biol Appl. 2017;79:950-957. [26] WANG W, TAN B, CHEN J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69-81. [27] LEIJTEN J, SEO J, YUE K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng R Rep. 2017;119:1-35. [28] ROBERTS DE, SCHER AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res. 1982;50(3): 342-351. [29] KOUTSOPOULOS S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4): 1002-1016. [30] MATHIEU M, BARTUNEK J, OUMEIRI BE, et al. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg. 2009;138(3):646-653. [31] QIU Y, PARK K.Environment-sensitive hydrogels for drug delivery.Adv Drug Deliv Rev. 2001;53(3):321-339. [32] XIONG ZH, WEI J, LU MQ, et al. Protective effect of human umbilical cord mesenchymal stem cell exosomes on preserving the morphology and angiogenesis of placenta in rats with preeclampsia. Biomed Pharmacother. 2018;9(105):1240-1247. [33] ANGERT D, BERRETTA RM, KUBO H, et al. Repair of the injured adult heart involves new myocytes potentially derived from rResident cardiac stem cells. Circ Res. 2011;108(10):1226-1237. [34] SOOD N, BHARDWAJ A, MEHTA S, et al. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2016;23(3):758-780. [35] CUI Z, NI NC, WU J, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8(10):2752-2764. [36] LU J, DAI QM, MA GS, et al. Erythropoietin attenuates cardiac dysfunction in rats by inhibiting endoplasmic reticulum stress-induced diabetic cardiomyopathy. Cardiovasc Drugs Ther. 2017;31(4):367-379. |
[1] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[2] | Wu Xun, Meng Juanhong, Zhang Jianyun, Wang Liang. Concentrated growth factors in the repair of a full-thickness condylar cartilage defect in a rabbit [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1166-1171. |
[3] | Shen Jinbo, Zhang Lin. Micro-injury of the Achilles tendon caused by acute exhaustive exercise in rats: ultrastructural changes and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1190-1195. |
[4] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[5] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[6] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[7] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[8] | Li Cai, Zhao Ting, Tan Ge, Zheng Yulin, Zhang Ruonan, Wu Yan, Tang Junming. Platelet-derived growth factor-BB promotes proliferation, differentiation and migration of skeletal muscle myoblast [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1050-1055. |
[9] | He Xiangzhong, Chen Haiyun, Liu Jun, Lü Yang, Pan Jianke, Yang Wenbin, He Jingwen, Huang Junhan. Platelet-rich plasma combined with microfracture versus microfracture in the treatment of knee cartilage lesions: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 964-969. |
[10] | Luo Xuanxiang, Jing Li, Pan Bin, Feng Hu. Effect of mecobalamine combined with mouse nerve growth factor on nerve function recovery after cervical spondylotic myelopathy surgery [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 719-722. |
[11] | Nie Huijuan, Huang Zhichun. The role of Hedgehog signaling pathway in transforming growth factor beta1-induced myofibroblast transdifferentiation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 754-760. |
[12] | Li Wenjing, Li Haobo, Liu Congna, Cheng Dongmei, Chen Huizhen, Zhang Zhiyong. Comparison of different bioactive scaffolds in the treatment of regenerative pulp of young permanent teeth [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 499-503. |
[13] | Chen Junyi, Wang Ning, Peng Chengfei, Zhu Lunjing, Duan Jiangtao, Wang Ye, Bei Chaoyong. Decalcified bone matrix and lentivirus-mediated silencing of P75 neurotrophin receptor transfected bone marrow mesenchymal stem cells to construct tissue-engineered bone [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 510-515. |
[14] | Sun Qi, Zhou Yanan, Dong Xin, Li Ning, Yan Jiazhen, Shi Haojiang, Xu Sheng, Zhang Biao. Metal-ceramic interface characteristics of Co-Cr alloy fabricated by selective laser melting [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 521-525. |
[15] | Liu Yang, Gong Yi, Fan Wei. Anti-hepatoma activity of targeted Pluronic F127/formononetin nanocomposite system in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 526-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||