Chinese Journal of Tissue Engineering Research ›› 2020, Vol. 24 ›› Issue (30): 4835-4840.doi: 10.3969/j.issn.2095-4344.2807
Previous Articles Next Articles
Li Xuxiang1, 2, Zhang Huikang1, 2, Wei Bo1, 2, Yao Qingqiang1, 2, Xu Yan1, 2, Tang Cheng1, 2, Wang Liming1, 2
Received:
2020-01-14
Revised:
2020-01-16
Accepted:
2020-03-11
Online:
2020-10-28
Published:
2020-09-19
Contact:
Wang Liming, Doctoral supervisor, Department of Orthopedics, Nanjing Hospital (Nanjing First Hospital) Affiliated to Nanjing Medical University, Nanjing 210006, Jiangsu Province, China; Digital Medicine Institute of Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
Tang Cheng, MD, Associate chief physician, Department of Orthopedics, Nanjing Hospital (Nanjing First Hospital) Affiliated to Nanjing Medical University, Nanjing 210006, Jiangsu Province, China; Digital Medicine Institute of Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
About author:
Li Xuxiang, Master candidate, Department of Orthopedics, Nanjing Hospital (Nanjing First Hospital) Affiliated to Nanjing Medical University, Nanjing 210006, Jiangsu Province, China; Digital Medicine Institute of Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
Supported by:
CLC Number:
Li Xuxiang, Zhang Huikang, Wei Bo, Yao Qingqiang, Xu Yan, Tang Cheng, Wang Liming. Application of personalized osteotomy guide plate in medial pivot knee prosthesis replacement based on MRI and three-dimensional CT[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(30): 4835-4840.
膝关节模拟手术及截骨导板设计:将mimics软件中获得的STL文件导入到 3-matics(Materialise,比利时)。股骨远端截骨:股骨机械轴定义为股骨头的中心点与膝关节的中心点连线。股骨头中心点:选取股骨头附近点云,将股骨头拟合为球形,中心即股骨头中心点。膝关节中心点:外科通髁轴与whitesides线交点即膝关节中心点,即可确定股骨机械轴,与股骨解剖轴约成5°角。将股骨远端以垂直于股骨机械轴方向行10 mm截骨。接着过股骨外科通髁轴做垂直于远端截骨面的垂面,即后髁截骨面,通过平移后髁截骨面行10 mm后髁截骨。股骨远端及后髁截骨面确定后即可模拟安装假体,微调假体位置并根据已知的假体型号参数确定股骨髁假体型号大小,当假体前后髁测量值介于两型号之间时,取测量数值接近的假体型号,通过股骨组件位置定位出配套股骨远端截骨器、四合一截骨器的定位钉孔位置,股骨侧导板非全关节面贴合设计,将股骨前皮质区域及内外侧髁侧方3处无软骨的区域作为特征性骨面,按照骨性标志放置导板。将股骨远端定位导板保存为STL文件。股骨端导板的制作见图2。胫骨平台截骨:胫骨机械轴定义为膝关节中心点与踝关节中心点的连线。胫骨平台中心点:垂直与胫骨机械轴方向截取5 mm厚胫骨平台块,去除平台骨坠,此时胫骨平台块质心即为胫骨平台中心点。踝关节中心点:选取踝区顶部区域几何中心点做为踝关节中心点。胫骨外侧平台截骨面后倾3°,以内侧髁关节面下方2 mm或外侧髁关节面下方10 mm为参照模拟截骨,再虚拟安装胫骨假体,并调整到合适位置,根据假体三维模型确定胫骨平台假体型号大小,通过胫骨组件位置定位截骨板钉孔位置。胫骨侧导板将胫骨内外侧平台前侧面及胫骨髁间棘3处区域作为特征性骨面用于放置导板,将胫骨侧定位导板保存为STL文件。胫骨端导板的制作见图3。 "
膝关节模拟手术及截骨导板设计:将mimics软件中获得的STL文件导入到 3-matics(Materialise,比利时)。股骨远端截骨:股骨机械轴定义为股骨头的中心点与膝关节的中心点连线。股骨头中心点:选取股骨头附近点云,将股骨头拟合为球形,中心即股骨头中心点。膝关节中心点:外科通髁轴与whitesides线交点即膝关节中心点,即可确定股骨机械轴,与股骨解剖轴约成5°角。将股骨远端以垂直于股骨机械轴方向行10 mm截骨。接着过股骨外科通髁轴做垂直于远端截骨面的垂面,即后髁截骨面,通过平移后髁截骨面行10 mm后髁截骨。股骨远端及后髁截骨面确定后即可模拟安装假体,微调假体位置并根据已知的假体型号参数确定股骨髁假体型号大小,当假体前后髁测量值介于两型号之间时,取测量数值接近的假体型号,通过股骨组件位置定位出配套股骨远端截骨器、四合一截骨器的定位钉孔位置,股骨侧导板非全关节面贴合设计,将股骨前皮质区域及内外侧髁侧方3处无软骨的区域作为特征性骨面,按照骨性标志放置导板。将股骨远端定位导板保存为STL文件。股骨端导板的制作见图2。胫骨平台截骨:胫骨机械轴定义为膝关节中心点与踝关节中心点的连线。胫骨平台中心点:垂直与胫骨机械轴方向截取5 mm厚胫骨平台块,去除平台骨坠,此时胫骨平台块质心即为胫骨平台中心点。踝关节中心点:选取踝区顶部区域几何中心点做为踝关节中心点。胫骨外侧平台截骨面后倾3°,以内侧髁关节面下方2 mm或外侧髁关节面下方10 mm为参照模拟截骨,再虚拟安装胫骨假体,并调整到合适位置,根据假体三维模型确定胫骨平台假体型号大小,通过胫骨组件位置定位截骨板钉孔位置。胫骨侧导板将胫骨内外侧平台前侧面及胫骨髁间棘3处区域作为特征性骨面用于放置导板,将胫骨侧定位导板保存为STL文件。胫骨端导板的制作见图3。 "
1.5.3 手术方法 两组手术由同一位高年资主任医师主刀,均采用经膝前正中纵行切口的内侧髌旁入路,麻醉均使用全身麻醉,具体手术方法为:①试验组:导板采用等离子消毒法对导板进行消毒灭菌。股骨远端无需刮除软骨,通过前皮质及内外侧髁3处无软骨的导板接触面直接安放导板,通过股骨导板定位钉孔确定股骨远端截骨板、远端四合一截骨板安放位置,依次安装远端截骨板与四合一截骨板进行截骨;将胫骨侧导板稳定贴附于胫骨平台,依据胫骨导板定位胫骨平台截骨器钉孔位置,安装胫骨平台截骨器,进行胫骨平台截骨。②对照组:采用标准的全膝关节置换技术。股骨侧采用髓内定位法定位股骨机械轴,行外翻角度5°。采用后参照四合一截骨板行股骨四合一截骨。胫骨侧采用髓外定位法,胫骨近端外侧截骨量10 mm,胫骨平台截骨面后倾3°。完成假体试模后,仔细检查伸屈间隙平衡及髌股关节匹配情况,对内外侧软组织选择性松解,髌骨周围去极化处理。脉冲枪冲洗截骨骨面后,骨水泥固定关节假体,电刀充分止血,逐层缝合关节囊及皮下组织,加压包扎,记录手术所需时间,术中出血量,术中图片见图4。 "
[1] MACHERAS GA,GALANAKOS SP,LEPETSOS P,et al.A long term clinical outcome of the MedialPivot Knee Arthroplasty System. Knee. 2017;24(2):447-453.
[2] KIM YH,YOON SH,KIM JS.Early outcome of TKA with a medial pivot fixed-bearing prosthesis is worse than with a PFC mobile- bearing prosthesis.Clin Orthop Relat Res.2009;467(2): 493-503.
[3] 邱冰,张明娇,唐本森,等.个性化手术导板在全膝关节置换术中的应用[J].中华骨科杂志,2016,36(3):143-150. [4] 丁焕文,王成焘,陆声,等.3D打印骨科模型技术标准专家共识[J].中华创伤骨科杂志,2017,19(1):61-64.
[5] 刘非.全膝关节置换术的研究进展[J].中国骨与关节杂志,2016,5(10): 765-770.
[6] HELMY N, MAI LDT, KÜHNEL SP. Accuracy of patient specific cutting blocks in total knee arthroplasty.Biomed Res Int. 2013; 2014(10):562919-562919.
[7] INNOCENTI B, BELLEMANS J, CATANI F. Deviations from optimal alignment in TKA:is there a biomechanical difference between femoral or tibial component alignment.J Arthroplasty. 2015;133(21):391-400.
[8] MAHFOUZ MR, ABDEL FATAH EE, MERKL BC, et al. Automatic and manual methodology for three-dimensional measurements of distal femoral gender differences and femoral component placement. J Knee Surg.2009;22(4):294-304.
[9] NG VY, DECLAIRE JH, BEREND KR, et al. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA.Clin Orthop Relat Res. 2012; 470(1):99-107.
[10] FAN CY, HSIEH JT, HSIEH M, et al. Primitive results after medialpivot knee arthroplasties a minimum 5-Year follow-up study.J Arthroplasty. 2010;25(3):492-496.
[11] HUANG H, HSIEH MF, ZHANG G, et al. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery.Australas Phys Eng Sci Med.2015;38(1):109-117.
[12] WON SH, LEE YK, HA YC, et al. Improving pre-operative planning for complex total hip replacement with a Rapid Prototype model enabling surgical simulation.Bone Joint J.2013;95(11): 1458-1463.
[13] 冷重光,赵江涛,陈崇民,等.计算机导航辅助下人工全膝关节置换术[J].中华骨科杂志,2006,26(10):666-670.
[14] MILLAR NL, DEAKIN AH, MILLAR LL, et al. Blood loss following total knee replacement in the morbidly obese:Effects of computer navigation. Knee.2011;18(2):108-112.
[15] 张敏,吴苏静,裴少华,等.高频超声对不同年龄段正常膝关节软骨厚度的测量研究[J].现代医用影像学,2017,26(6):1761-1763.
[16] 袁丁,李涛,徐浩,等.内轴型膝关节假体临床应用研究进展[J].中国矫形外科杂志,2016,4(14):1304-1307.
[17] FITCH DA, SEDACKI K, YANG Y. Mid to long-term outcomes of a medial-pivot system for primary total knee replacement:a systematic review and meta-analysis.Bone Joint Res.2014;3(10): 297-304.
[18] CARVALHO JUNIOR LH, TEIXEIRA BP, BERNARDES CO, et al. Range of motion predictability after total knee arthroplasty with medial pivot prosthesis.Rev Bras Ortop.2017;52(2):197-202.
[19] SHIMMIN A, MARTINEZ-MARTOS S, OWENS J, et al. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty.Knee.2015;22(6):522-526.
[20] NAKAMURA S, MINODA Y, NAKAGAWA S, et al. Clinical results of alumina medial pivot total knee arthroplasty at a minimum follow up of 10 years.Knee.2017;24(2):434-438.
[21] SABATINI L, RISITANO S, PARISI G, et al. Medial pivot in total knee arthroplasty:literature review and our first experience.Clin Med Insights Arthritis Musculoskelet Disord.2018;(11): 1179544117751431.
[22] 张珂,王荣,刘江俊,等.双侧膝关节置换内轴膝假体与后稳定型假体的近中期疗效对比研究[J].中华骨与关节外科杂志,2018,11(3): 166-170.
[23] 王伟卓,黄孟迪,侯东峰,等.内轴型膝关节假体置换保留后交叉韧带型假体与切除后交叉韧带型假体的早中期疗效[J].中国骨与关节杂志,2018,7(8): 564-568.
[24] 徐志宏,徐嘉诚,陈东阳,等.全膝关节置换术股骨髓外定位系统的研制及初步临床应用[J].中华骨科杂志,2016,36(15):955-963. [25] 黄辰宇,刘帅,田书畅,等.iASSIST智能辅助定位系统在膝关节内外翻畸形全膝关节置换中的应用[J].中国组织工程研究,2018,22(11): 1653-1658. |
[1] | Lu Dezhi, Mei Zhao, Li Xianglei, Wang Caiping, Sun Xin, Wang Xiaowen, Wang Jinwu. Digital design and effect evaluation of three-dimensional printing scoliosis orthosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1329-1334. |
[2] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[3] | Wang Jinjun, Deng Zengfa, Liu Kang, He Zhiyong, Yu Xinping, Liang Jianji, Li Chen, Guo Zhouyang. Hemostatic effect and safety of intravenous drip of tranexamic acid combined with topical application of cocktail containing tranexamic acid in total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1356-1361. |
[4] | Peng Zhihao, Feng Zongquan, Zou Yonggen, Niu Guoqing, Wu Feng. Relationship of lower limb force line and the progression of lateral compartment arthritis after unicompartmental knee arthroplasty with mobile bearing [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1368-1374. |
[5] | Huang Dengcheng, Wang Zhike, Cao Xuewei. Comparison of the short-term efficacy of extracorporeal shock wave therapy for middle-aged and elderly knee osteoarthritis: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1471-1476. |
[6] | Gao Yan, Zhao Licong, Zhao Hongzeng, Zhu Yuanyuan, Li Jie, Sang Deen. Alteration of low frequency fluctuation amplitude at brain-resting state in patients with chronic discogenic low back pain [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1160-1165. |
[7] | Liu Xiangxiang, Huang Yunmei, Chen Wenlie, Lin Ruhui, Lu Xiaodong, Li Zuanfang, Xu Yaye, Huang Meiya, Li Xihai. Ultrastructural changes of the white zone cells of the meniscus in a rat model of early osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1237-1242. |
[8] | Liu Zhengpeng, Wang Yahui, Zhang Yilong, Ming Ying, Sun Zhijie, Sun He. Application of 3D printed interbody fusion cage for cervical spondylosis of spinal cord type: half-year follow-up of recovery of cervical curvature and intervertebral height [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 849-853. |
[9] | Zhao Zhongyi, Li Yongzhen, Chen Feng, Ji Aiyu. Comparison of total knee arthroplasty and unicompartmental knee arthroplasty in treatment of traumatic osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 854-859. |
[10] | Yuan Jun, Yang Jiafu. Hemostatic effect of topical tranexamic acid infiltration in cementless total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 873-877. |
[11] | Jing Huimin, Yu Wenjuan, Wang Sijia, Chen Cong, Li Yifan, Wang Yonglan, Li Xin, Zhang Juan, Liang Meng. Resting-state functional magnetic resonance imaging evaluation of the brain’s default mode network in patients with sleep bruxism [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 685-689. |
[12] | Cao Xuhan, Bai Zixing, Sun Chengyi, Yang Yanjun, Sun Weidong. Mechanism of “Ruxiang-Moyao” herbal pair in the treatment of knee osteoarthritis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 746-753. |
[13] | Xu Junma, Yu Yuechao, Liu Zhi, Liu Yu, Wang Feitong. Application of 3D-printed coplanar template combined with fixed needle technique in percutaneous accurate biopsy of small pulmonary nodules [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 761-764. |
[14] | Li Yonghua, Feng Qiang, Tan Renting, Huang Shifu, Qiu Jinlong, Yin Heng. Molecular mechanism of Eucommia ulmoides active ingredients treating synovitis of knee osteoarthritis: an analysis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 765-771. |
[15] | Song Shan, Hu Fangyuan, Qiao Jun, Wang Jia, Zhang Shengxiao, Li Xiaofeng. An insight into biomarkers of osteoarthritis synovium based on bioinformatics [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 785-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||