Chinese Journal of Tissue Engineering Research ›› 2020, Vol. 24 ›› Issue (25): 4088-4093.doi: 10.3969/j.issn.2095-4344.2085
Previous Articles Next Articles
Application of stem cells, tissue engineering scaffolds and neurotrophic factors in the treatment of spinal cord injury
Ji Hangyu1, Gu Jun2, Xie Linghan1, Wu Xiaotao1
1Department of Spinal Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; 2Department of Orthopedics, Wuxi Branch, Zhongda Hospital, Southeast University, Wuxi 214105, Jiangsu Province, China
Received:
2019-10-11
Revised:
2019-10-14
Accepted:
2019-11-19
Online:
2020-09-08
Published:
2020-08-26
Contact:
Wu Xiaotao, MD, Professor, Chief physician, Doctoral supervisor, Department of Spinal Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
About author:
Ji Hangyu, Doctoral candidate, Department of Spinal Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
Supported by:
the Clinical Medical Science and Technology Development Fund of Jiangsu University in 2018, No. JLY20180027; a grant from Department of Health of Jiangsu Health and Family Planning Commission in 2018, No. H2018023
CLC Number:
Ji Hangyu, Gu Jun, Xie Linghan, Wu Xiaotao.
Application of stem cells, tissue engineering scaffolds and neurotrophic factors in the treatment of spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4088-4093.
2 结果 Results 2.1 干细胞移植 目前,细胞移植的治疗方法已经成为促进脊髓损伤后功能恢复的一种潜在方案,但其有效性与长期的安全性还需要进一步证实[11]。目前实验中所选用的移植细胞有很多种类,主要包括非干细胞和干细胞,前者包括嗅鞘细胞、许旺细胞、成纤维细胞等,后者包括成体干细胞和非成体干细胞[10,12]。胚胎干细胞和神经干细胞在早期的基础研究中曾有着极其重要的应用,但是由于存在着伦理问题、排斥反应以及来源受限等缺点,从而限制了其发展。目前干细胞中研究最多的是骨髓间充质干细胞和脂肪间充质干细胞[13]。 2.1.1 干细胞治疗脊髓损伤的机制 干细胞治疗脊髓损伤的机制目前还不是很清楚,通常认为有以下几种可能:①移植后的干细胞可以分化为神经元细胞和神经胶质细胞,与正常的神经元细胞建立新的连接;②下调炎症与凋亡相关基因,上调具有神经保护的基因;③促进轴突周围髓鞘的形成;④促进轴突再生和突触形成[14-16]。 2.1.2 干细胞移植的方法 干细胞移植的方法很多,目前较为常用的有髓内、鞘内、血管内等方法,其中髓内注射的方法最有效,但侵袭性最大,而血管内注射的方法侵袭性最小,但效果最差[17]。GEFFNER等[18]通过鞘内注射与血管内注射的方法将骨髓间充质干细胞移植到脊髓损伤患者体内,所有患者均获得了脊髓功能的部分恢复,而且移植后没有明显的不良反应。然而OSAKA等[19]使用神经干细胞与神经祖细胞采用鞘内移植的方法治疗小鼠脊髓损伤时,发现移植细胞存活率低,而且小鼠功能没有明显恢复。 2.1.3 干细胞移植的时机 合适的移植时机对于干细胞的存活与受损神经系统的再生具有至关重要的作用。ANTONIC等[20]认为脊髓损伤后产生的神经毒素会对移植细胞的存活、增殖与分化造成不利的影响,所以合适的时机应该是脊髓损伤后的1,2周。NAKAJIMA等[21]则认为应该在脊髓损伤后立即进行细胞移植,因为脊髓损伤后的炎症对移植的干细胞影响并不大,而且移植后的细胞可以改变局部不利的微环境,从而减轻周围神经元的二次损害。 2.2 组织工程支架 干细胞移植在脊髓损伤模型中的应用已被证明了有效性,但仍然存在着很多问题[22],于是组织工程支架技术被引入了干细胞移植领域。支架可以提供一个三维的空间,为干细胞提供有效支持,从而促进干细胞在体内的黏附、迁移和分化[23]。研究表明,在动物模型中通过使用以生物材料为基础的支架[24],可以有限地实现神经轴突及神经元的再生,通常来说组织工程支架需要具备以下标准[25]:生物相容性、生物降解性、机械强度。 目前,根据不同的标准可以把支架分为不同的类型,根据材料来源可以分为天然支架和人工合成支架[26],根据成分可以分为单组分支架和复合组分支架[27],根据不同的状态可以分为固体支架和液体支架[28]。与单一组分支架相比,包含多个组分的复合支架可能更好,因为它可以避免单一组分支架的缺点;此外,与人工合成支架相比,天然成分的支架可能更好[29],因为天然支架具有明显的优点:生物相容性、生物降解性、低毒性、渗透性、高孔隙度、可塑性、亲水性[30],但是天然支架也存在着缺点:成本高、机械稳定性低[31]。目前用于脊髓组织工程的天然聚合物主要有壳聚糖、琼脂糖、藻酸盐、胶原蛋白、纤维蛋白和明胶[32]。在实验中应用比较广泛的是壳聚糖[33],它作为一种天然支架材料,具有良好的生物相容性、生物降解性以及低生物毒性,但同时也存在着一定的缺点如降解性快、溶胀率高等。 近年来,为了提供良好的机械支持以及递送细胞、药物和生长因子,设计了各种复杂结构的支架[34],如水凝胶支架、三维多孔纳米纤维支架和脱细胞脊髓支架等。水凝胶为三维多孔结构[35],其特征是与软组织具有相似的高含水量,可注射水凝胶作为一种微创技术在脊髓损伤再生领域得到了广泛关注[36],其表面可以涂上天然的或合成的基质,这些基质注射到脊髓后会迅速从液体转化为凝胶[37]。水凝胶支架的优点在于:①可以填充损伤区域;②作为干细胞的载体,为脊髓损伤组织再生创造良好的环境;③具有更强的抵抗力;④更少的免疫原性[38]。三维多孔纳米纤维支架则具有更高的表面积,植入后可以促进干细胞的黏附、增殖和分化[39]。支架内的纳米纤维则通过引导细胞生长显著影响再生过程。此外,纳米纤维支架既可以单独使用,也可以与水凝胶一起使用[40]。脱细胞脊髓支架是脊髓组织工程的一种替代支架[41]。它们是通过化学提取获得天然脱细胞基质,这些基质由组织的非细胞部分组成,主要成分是蛋白质,如胶原蛋白、层粘连蛋白、纤维连接蛋白和胶原蛋白等。这种支架柔软而灵活,含有贯穿其全长的线性导向孔[42]。 尽管支架在组织工程中具有治疗潜力,但是很多研究的支架都存在着一定的缺陷,如与移植物相关的生物材料的细胞毒性、移植物结构的部分或全部塌陷以及移植物在体内的降解率不足[43]。 2.3 间充质干细胞联合组织工程支架 间充质干细胞由于具有其他干细胞所没有的优势而得到了广泛的研究,其优点在于[44]:①不存在伦理问题;②易于分离;③具有很强的再生能力和免疫调节特性,不存在免疫排斥的风险;④可以对抗炎症和凋亡等有害事件,为神经元再生创造了有利的微环境[45]。与单独的细胞移植或单独的工程支架移植相比,各种间充质干细胞联合组织工程支架移植表现出了更好的疗效[46]。 2.3.1 骨髓间充质干细胞联合组织工程支架 ITOSAKA等[47]在脊髓半切损伤的大鼠模型中,与单独植入骨髓间充质干细胞相比,联合纤维蛋白支架植入的干细胞显示出更高的存活率,并增强了向神经元分化的能力,同时他们观察到在移植后第14,21,28天大鼠的运动功能有显著改善。 另一种方法则是将2种不同的生物材料结合在一个独特的支架上,以降低单一材料的缺点,这样不仅可以种植细胞,还可以传递神经营养因子[48]。此外,还有一种包含神经营养因子3的支架,支架表面覆盖纤维蛋白凝胶(NF-GS),将该支架植入脊髓横切的大鼠和犬的损伤部位,以填补缺口,4周后在脊髓损伤处附近的头侧和尾侧可以观察到神经丝蛋白阳性的细胞数量明显增加,这可能意味着神经纤维出现了再生[49]。 2.3.2 脂肪间充质干细胞联合组织工程支架 首先需要在体外将脂肪间充质干细胞诱导分化成许旺细胞,然后将其种植到胶原支架中,共同移植到脊髓半切损伤大鼠模型中观察[50],与不接受干细胞移植组和接受骨髓间充质干细胞分化的许旺细胞移植组相比,接受细胞联合支架移植的大鼠在感觉与运动功能方面得到了明显改善。这些结果表明,干细胞联合支架的移植效果更好[51]。 2.3.3 脐血间充质干细胞联合组织工程支架 CARON等[52]将人脐血间充质干细胞种植在海绵状HG-RGD支架上,发现干细胞在体内存活时间更长,在植入8周后观察到细胞+支架组较单独植入支架组运动恢复更为明显。JIAO等[53]将复合支架与人脐血间充质干细胞联合使用也观察到同样结果,同时还观察到神经元标记物MAP2、NeuN和Nestin阳性细胞比例增加,这表明接种的脐血间充质干细胞向神经元转化的趋势在增加,见图1。 2.3.4 子宫内膜间充质干细胞联合支架 EBRAHIMI- BAROUGH等[54]用Ly294002在体外培养人子宫内膜间充质干细胞,然后将这些干细胞植入由聚己内酯/胶原电纺丝纤维构成的复合支架上,观察到支架上的干细胞向运动神经元样细胞分化更明显。 2.3.5 牙髓间充质干细胞联合支架 口腔源性间充质干细胞是一种有广泛前景的干细胞来源,也可应用于脊髓损伤。据相关研究表明,与其他来源的间充质干细胞相比,来自口腔组织的间充质干细胞具有向神经元样细胞分化的天然倾向,这可能是由于它们起源于神经嵴[55]。为此,ZHANG等[56]将牙髓间充质干细胞接种于壳聚糖支架上,在特定的神经源性培养基中培养14 d,诱导细胞向神经元表型分化。值得注意的是,壳聚糖支架可以提高牙髓间充质干细胞的分化率,增加少突胶质细胞标记物CNPase、星形胶质细胞标记物GFAP和神经元标记物MAP-2的阳性细胞数量。在神经分化后,这些细胞被移植到慢性脊髓损伤大鼠模型中(脊髓损伤后1周),与只接受牙髓间充质干细胞没有支架的对照组相比,神经营养因子如脑源性神经营养因子、胶质细胞源性神经营养因子、β-神经生长因子、神经营养因子3水平明显增加。 2.4 神经营养因子 在脊髓损伤动物模型中,神经营养因子的作用越来越受到重视,一系列实验证明它们可以提高神经元的存活率,促进轴突的再生。在中枢与周围神经系统的细胞存活、分化与轴突生长的发育过程中,神经营养因子均发挥着至关重要的作用。它主要包括神经生长因子、脑源性神经生长因子、神经营养因子3、神经营养因子4/5等[57]。 2.4.1 脑源性神经营养因子 脑源性神经营养因子是脊髓损伤实验中最常用的生长因子,据BROCK等[58]报道外源性的脑源性神经营养因子可以减少皮质萎缩,可以增加损伤部位轴突的数量、髓鞘的形成并诱导损伤部位广泛的再生。当然也不是所有的轴突都对脑源性神经营养因子有反应,MENEI等[59]发现它对本体感觉没有明显的作用,而BROCK等[58]则发现它对皮质脊髓束没有明显作用。但是,HAN等[60]将脑源性神经营养因子与胶原蛋白结合可以增加皮质脊髓束以及外周的轴突再生。 2.4.2 神经营养因子3 神经营养因子3在实验研究中也得到了广泛的应用,它大多在损伤后短时间内被递送到受损的脊髓及其毗邻区域。KADOYA等[61]通过改变神经营养因子3的浓度、周围微环境等方法,观察到了脊髓功能的改善。有研究认为神经营养因子3对髓鞘的形成有着积极的影响[62],将神经营养因子3与其他神经营养因子如脑源性神经营养因子联合应用时则可以减少红核脊髓束中神经元的萎缩与死亡[63]。 2.4.3 神经生长因子和神经营养因子4/5 这2种神经营养因子在实验中的应用相对较少,有研究发现它们可以改善受损处轴突的生长情况[64],也有研究发现神经生长因子可以降低T9挫伤后脊髓神经元内质网诱导的凋亡,从而改善运动功能[65]。 2.4.4 成纤维细胞生长因子 成纤维细胞生长因子可与膜相关蛋白多糖相互作用,并与多种受体亚型结合,对损伤区域的组织有着明显的改善。GOLDSHMIT等[66]发现成年小鼠皮下注射成纤维细胞生长因子2可以减少炎症、小胶质细胞和巨噬细胞的激活。LEE等[67]研究发现在脊髓损伤后1 h内给予成纤维细胞生长因子2可以减少损伤范围,然而损伤后3 h再给予成纤维细胞生长因子2时,则不会出现上述的变化,说明移植时机对神经营养因子也很重要。 "
[1] WIGINTON JG 4TH, BRAZDZIONIS J, MOHRDAR C, et al. Spinal Cord Reperfusion Injury: Case Report, Review of the Literature, and Future Treatment Strategies. Cureus. 2019;11(7): e5279.
[2] WANG HC, LIN YT, HSU SY, et al. Serial plasma DNA levels as predictors of outcome in patients with acute traumatic cervical spinal cord injury. J Transl Med. 2019;17(1):329.
[3] SCHWAB ME, BARTHOLDI D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76(2): 319-370.
[4] SILVER JR. A systematic review of the therapeutic interventions for heterotopic ossification after spinal cord injury. Spinal Cord. 2011;49(3): 482; author reply 484.
[5] THURET S, MOON LD, GAGE FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7(8):628-643.
[6] REGAN MA, TEASELL RW, WOLFE DL, et al. A systematic review of therapeutic interventions for pressure ulcers after spinal cord injury. Arch Phys Med Rehabil. 2009;90(2):213-231.
[7] TEASELL RW, MEHTA S, AUBUT JL, et al. A systematic review of the therapeutic interventions for heterotopic ossification after spinal cord injury. Spinal Cord. 2010;48(7):512-521.
[8] CHOO AM, LIU J, DVORAK M, et al. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol. 2008;212(2):490-506.
[9] DONNELLY DJ, POPOVICH PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209(2):378-388.
[10] LIN XY, LAI BQ, ZENG X, et al. Cell Transplantation and Neuroengineering Approach for Spinal Cord Injury Treatment: A Summary of Current Laboratory Findings and Review of Literature. Cell Transplant. 2016;25(8):1425-1438.
[11] RIBEIRO-SAMY S, SILVA NA, CORRELO VM, et al. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration. Macromol Biosci. 2013;13(11): 1576-1592.
[12] ERN C, FRASHERI I, BERGER T, et al. Effects of prostaglandin E2 and D2 on cell proliferation and osteogenic capacity of human mesenchymal stem cells. Prostaglandins Leukot Essent Fatty Acids. 2019;151:1-7.
[13] LI Z, YE H, CAI X, et al. Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke. Brain Res Bull. 2019;153:324-333.
[14] YANG C, LIM W, PARK J, et al. Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod. 2019; 25(11):755-771.
[15] CHU KA, WANG SY, YEH CC, et al. Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly. Theranostics. 2019;9(22):6646-6664.
[16] CHEN Z, HAN X, OUYANG X, et al. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Theranostics. 2019;9(22): 6354-6368.
[17] KOAYKUL C, KIM MH, KAWAHARA Y, et al. Maintenance of Neurogenic Differentiation Potential in Passaged Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions. Stem Cells Dev. 2019;28(23): 1552-1561.
[18] GEFFNER LF, SANTACRUZ P, IZURIETA M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12): 1277-1293.
[19] OSAKA M, HONMOU O, MURAKAMI T, et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 2010;1343: 226-235.
[20] ANTONIC A, SENA ES, LEES JS, et al. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol. 2013;11(12): e1001738.
[21] NAKAJIMA H, UCHIDA K, GUERRERO AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29(8):1614-1625.
[22] BARBIER L, RAMOS E, MENDIOLA J, et al. Autologous dental pulp mesenchymal stem cells for inferior third molar post-extraction socket healing: A split-mouth randomised clinical trial. Med Oral Patol Oral Cir Bucal. 2018;23(4):e469-e477.
[23] LEVI AD, ANDERSON KD, OKONKWO DO, et al. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma. 2019;36(6):891-902.
[24] NICODEMUS GD, BRYANT SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):149-165.
[25] ZHOU X, SHI G, FAN B, et al. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomedicine. 2018;13:6265-6277.
[26] JI WC, ZHANG XW, QIU YS. Selected suitable seed cell, scaffold and growth factor could maximize the repair effect using tissue engineering method in spinal cord injury. World J Exp Med. 2016;6(3):58-62.
[27] SILVA NA, SALGADO AJ, SOUSA RA, et al. Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Eng Part A. 2010;16(1):45-54.
[28] MACAYA D, SPECTOR M. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater. 2012;7(1):012001.
[29] MORITA T, SASAKI M, KATAOKA-SASAKI Y, et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience. 2016;335:221-231.
[30] ZHOU HL, ZHANG XJ, ZHANG MY, et al. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury. Neurochem Res. 2016;41(10): 2708-2718.
[31] SATTI HS, WAHEED A, AHMED P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy. 2016;18(4):518-522.
[32] VOLPATO FZ, FÜHRMANN T, MIGLIARESI C, et al. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials. 2013; 34(21):4945-4955.
[33] BOIDO M, GHIBAUDI M, GENTILE P, et al. Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci Rep. 2019;9(1):6402.
[34] HU X, ZHOU X, LI Y, et al. Application of stem cells and chitosan in the repair of spinal cord injury. Int J Dev Neurosci. 2019;76:80-85.
[35] CAI Z, GAN Y, BAO C, et al. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Adv Healthc Mater. 2019;8(13):e1900013.
[36] MORENO PMD, RODRIGUES T, TORRADO M, et al. Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury. Methods Mol Biol. 2019;2036:205-219.
[37] ZAVISKOVA K, TUKMACHEV D, DUBISOVA J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J Biomed Mater Res A. 2018; 106(4):1129-1140.
[38] SITOCI-FICICI KH, MATYASH M, UCKERMANN O, et al. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochir (Wien). 2018;160(3):449-457.
[39] 王欢,林宏生,查振刚,等.聚左旋乳酸/壳聚糖纳米纤维三维多孔支架复合骨髓间充质干细胞修复兔骨缺损[J].中国组织工程研究, 2012,16(8):1331-1335.
[40] NGUYEN LH, GAO M, LIN J, et al. Author Correction: Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep. 2018;8(1):13057.
[41] WANG YH, CHEN J, ZHOU J, et al. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells. Exp Ther Med. 2017; 13(1):203-207.
[42] ZHANG XY, XUE H, LIU JM, et al. Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair. J Biomed Mater Res A. 2012;100(3):578-587.
[43] SUN Y, YANG C, ZHU X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J Biomed Mater Res A. 2019;107(9): 1898-1908.
[44] 方洪松,周建林,彭昊,等.不同来源间充质干细胞生物学特性差异[J].中国组织工程研究, 2015,19(32):5243-5248.
[45] PASANISI E, CIAVARELLA C, VALENTE S, et al. Differentiation and plasticity of human vascular wall mesenchymal stem cells, dermal fibroblasts and myofibroblasts: a critical comparison including ultrastructural evaluation of osteogenic potential. Ultrastruct Pathol. 2019;43(6):261-272.
[46] TAGUCHI T, BORJESSON DL, OSMOND C, et al. Influence of Donor's Age on Immunomodulatory Properties of Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Dev. 2019;28(23):1562-1571.
[47] ITOSAKA H, KURODA S, SHICHINOHE H, et al. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering. Neuropathology. 2009;29(3):248-257.
[48] KIM JH, SHIM SR, DOO SW, et al. Bladder recovery by stem cell based cell therapy in the bladder dysfunction induced by spinal cord injury: systematic review and meta-analysis. PLoS One. 2015;10(3):e0113491.
[49] DU BL, ZENG X, MA YH, et al. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection. J Biomed Mater Res A. 2015;103(4): 1533-1545.
[50] WAGNER ER, BRAVO D, DADSETAN M, et al. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate. Tissue Eng Part A. 2015;21(21-22):2703-2713.
[51] GAO S, ZHAO P, LIN C, et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng Part A. 2014;20(7-8):1271-1284.
[52] CARON I, ROSSI F, PAPA S, et al. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials. 2016;75:135-147.
[53] JIAO G, LOU G, MO Y, et al. A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair. Mater Sci Eng C Mater Biol Appl. 2017;74:230-237.
[54] EBRAHIMI-BAROUGH S, NOROUZI JAVIDAN A, SABERI H, et al. Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds. Mol Neurobiol. 2015;52(3): 1704-1713.
[55] YANG C, LI X, SUN L, et al. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng. 2017; 14(2):026005.
[56] ZHANG J, LU X, FENG G, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res. 2016;366(1):129-142.
[57] RAZAVI S, GHASEMI N, MARDANI M, et al. Remyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury. Iran J Basic Med Sci. 2017;20(4):392-398.
[58] BROCK JH, ROSENZWEIG ES, BLESCH A, et al. Local and remote growth factor effects after primate spinal cord injury. J Neurosci. 2010; 30(29):9728-9737.
[59] MENEI P, MONTERO-MENEI C, WHITTEMORE SR, et al. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci. 1998;10(2):607-621.
[60] HAN S, WANG B, JIN W, et al. The collagen scaffold with collagen binding BDNF enhances functional recovery by facilitating peripheral nerve infiltrating and ingrowth in canine complete spinal cord transection. Spinal Cord. 2014;52(12):867-873.
[61] KADOYA S, NAKAMURA T, TAKARADA A, et al. Magnetic resonance imaging of diseased cervical and lumbar intervertebral discs. Neurol Med Chir (Tokyo). 1989;29(2):99-105.
[62] HWANG DH, KIM HM, KANG YM, et al. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant. 2011;20(9):1361-1379.
[63] NOVIKOVA LN, NOVIKOV LN, KELLERTH JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 2000;12(2):776-780.
[64] BLESCH A, TUSZYNSKI MH. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol. 2003;467(3):403-417.
[65] FENG SQ, KONG XH, LIU Y, et al. Regeneration of spinal cord with cell and gene therapy. Orthop Surg. 2009;1(2):153-163.
[66] GOLDSHMIT Y, FRISCA F, PINTO AR, et al. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav. 2014;4(2):187-200.
[67] LEE MJ, CHEN CJ, CHENG CH, et al. Combined treatment using peripheral nerve graft and FGF-1: changes to the glial environment and differential macrophage reaction in a complete transected spinal cord. Neurosci Lett. 2008;433(3):163-169.
[68] MARKMEE R, AUNGSUCHAWAN S, POTHACHAROEN P, et al. Effect of ascorbic acid on differentiation of human amniotic fluid mesenchymal stem cells into cardiomyocyte-like cells. Heliyon. 2019;5(7):e02018.
[69] MASSOTO TB, SANTOS ACR, RAMALHO BS, et al. Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Res. 2020;1726:146494.
[70] KUMAGAI G, TSOULFAS P, TOH S, et al. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol. 2013;248:369-380.
[71] HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415-419.
[72] LIMONGI T, ROCCHI A, CESCA F, et al. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Mol Neurobiol. 2018; 55(12):8788-8798.
[73] CHEHREHASA F, COBCROFT M, YOUNG YW, et al. An acute growth factor treatment that preserves function after spinal cord contusion injury. J Neurotrauma. 2014;31(21):1807-1813.
[74] GARCÍA-ALÍAS G, PETROSYAN HA, SCHNELL L, et al. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci. 2011;31(49):17788-17799.
[75] KANNO H, PRESSMAN Y, MOODY A, et al. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci. 2014;34(5):1838-1855.
[76] BOYCE VS, MENDELL LM. Neurotrophic factors in spinal cord injury. Handb Exp Pharmacol. 2014;220:443-460.
[77] LIU J, CHEN T, LEI P, et al. Exosomes Released by Bone Marrow Mesenchymal Stem Cells Attenuate Lung Injury Induced by Intestinal Ischemia Reperfusion via the TLR4/NF-κB Pathway. Int J Med Sci. 2019;16(9):1238-1244.
[78] BASTOS R, MATHIAS M, ANDRADE R, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc. 2019 Oct 5. doi: 10.1007/s00167-019-05732-8. [Epub ahead of print]
[79] MAFIKANDI V, ROODBARI NH, NABIUNI M, et al. Effects of maternal thyroid hormone deficiency on differentiation of mesenchymal stem cells in CSF-exposed neonatal Wistar rats. Acta Neurobiol Exp (Wars). 2019; 79(3):270-275. |
[1] | Zhou Pengfei, Lin Jing, Chen Yuying, Lin Minkui. Canine dental pulp stem cells-polyglycolic acid scaffold complex for canine periodontal tissue defect [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(34): 5526-5531. |
[2] | Yu Xingge, Lin Kaili. Application of nanocomposite hydrogels in bone tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(34): 5441-5446. |
[3] | Liao Jian, Huang Xiaolin, Zhou Qian, Huo Hua, Qi Yuhan, Wu Chao, Shi Qianhui, Yang Tongjing, Liao Yunmao, Liang Xing. Calcined bone/chitosan composite promotes osteogenic differentiation of bone marrow mesenchymal stem cells in Sprague-Dawley rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 4941-4947. |
[4] | Cui Xintao, Zhang Zhenyu. Physical factors and mechanisms affecting osteogenic ability of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5064-5070. |
[5] | Liu Xiaoyin, , Zhong Lin, Zheng Bo, Wei Pan, Dai Chen, Hu Liangcong, Wang Tiantian, Liang Xiaolong, Zhang Sai, Wang Xiaoli. Diffusion tensor imaging predicting locomotor function recovery with 3D printing scaffold after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(28): 4547-4554. |
[6] |
Yang Jiayi, Zhang Guanghao, Zhang Cheng, Li Ke, Huo Xiaolin, Wu Changzhe.
Stem cell expansion and hepatic differentiation: measurement of related indicators and detection methods [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4039-4045. |
[7] |
Shi Xu, Liu Jingsong, Wan Ran, Wang Yansong.
Research progress in mesenchymal stem cells for treating spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4081-4087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||