Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (47): 8242-8247.doi: 10.3969/j.issn.2095-4344.2013.47.016
Previous Articles Next Articles
Yu Fang-fang1, Wang Jin-guang1, He Bing-bing2, Wu Ai-jiu2, Xu Jian-ming1, Kong De-run1
Revised:
2013-09-09
Online:
2013-11-19
Published:
2013-11-19
Contact:
Kong De-run, Associate professor, Chief physician, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
kdr168@sohu.com
About author:
Yu Fang-fang★, Studying for master’s degree, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
fangyu723@126.com
Supported by:
the Natural Science Foundation of Anhui Educational Bureau, No. KJ2010A158*, KJ2012Z189*; the Medical Research Foundation of Anhui Health Bureau, No. 2010B018*; the National Natural Science Foundation of China, 81070337*, 81271736*
CLC Number:
Yu Fang-fang, Wang Jin-guang, He Bing-bing, Wu Ai-jiu, Xu Jian-ming, Kong De-run. Fiber optical sensor effectiveness in the human body[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(47): 8242-8247.
2.1 光纤传感器的基本工作原理 光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,成为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。 光纤传感器的测量原理有2种。①物性型光纤传感器原理,物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压等。②结构型光纤传感器原理,结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 2.2 对颅内压的监测 暴露于爆炸波时可引起脑部损伤,目前爆炸波所导致的准确脑部损伤机制仍不明确。Chavko等[3]将光纤压力传感器用于监测爆炸时大鼠脑部的压力波。光纤传感器被放置于大鼠第三脑室,该大鼠暴露于40 kPa冲击波的充气压力驱动激波管中。传感器是由硅胶制成的膜组成的微小Fabry-Perot腔,该膜为压力敏感元件。当作用于传感器的压力增加时,硅胶膜发生变形,传感器Fabry-Perot腔被压缩。由于传感器连接在多模光纤上,该多模光纤可以传导传感器和信号调整器之间的光纤信号。 这种微小压力传感器分辨率及频率响应可以用来研究能量转换,该能量转换可以作为人体不同部分暴露于爆炸区的结果,这样可以对损伤机制有更好的了解,并制定更好的保护措施来应对爆炸波所致损伤。增高的颅内压是缺血性脑损伤,包括脑卒中、脑损伤和心脏骤停过程中亟需解决的问题之一。临床中目前的治疗是控制升高的颅内压,有必要在动物模型中对颅内压进行监测,更深一步了解发生机制、提出新的治疗方法。目前测量颅内压的方法为导管插入法,这种心室内导管插入法已成为人颅内压测量的金标准[4]。但这种测压方法要去除部分头颅骨,导管插入脑组织中是一种有创性检查方法,心室导管有6%-11%的感染率,并不被临床所接受[5]。Murtha 等[6]将光纤传感器用于老鼠硬膜外颅内压监测,具有很高的压力保真度。将传感器放置于硬膜外而不是脑组织,通过实验表明光纤传感器可以准确、敏感地检测颅内压,且不会对脑部造成重大损伤。Tamburrini 等[7]将光纤压力传感器用于连续监测颅内压,实验结果表明光纤设备所测得的压力结果可靠、且并发症少。Gelabert-González等[8]提出Camino传感器仍然是危重脑外科患者中最常用的颅内压监测设备,该系统提供了可靠的颅内压测量,且可以体内重新校准,技术上的并发症发生率低。 2.3 咽部压力的测量 咽部压力的测量是诊断吞咽功能方法之一。Takeuchi等[9]将光纤传感器用于测量咽部压力,对吞咽进行分析。该传感器是由对流体和空气敏感的光纤压力传感器及其附件组成。附件由薄的聚四氟乙烯管、苯乙烯管、硅树脂管和生理盐水组成。聚四氟乙烯管的压力敏感部件长度为15 mm,该数值是以食管上括约肌的压力区域的平均宽度为依据而设计的。苯乙烯管可以帮助传感器插入到咽部,生理盐水为不可压缩的流体,可以传递压力到传感器膜上。因此,光纤测压计可以充分探测出食糜运动诱导的食管胃横向压力和吸入压力。在咽部测压中食管胃段产生的压力有重要的作用。将光纤传感器用于患者咽部测压,该患者没有咽部和上消化道的功能紊乱,在内镜监测时比较光纤咽部测压计和传统压力传感器检测结果,发现光纤咽部测压计具有光学传感器及传统固态传感器的特征,所测得的压力结果与传统测压结果呈线性相关。 2.4 小儿气管内压力测量 呼吸监测是评价机体生理状态的最重要的一个部分,它可以提供心血管系统、神经系统、呼吸系统重要信息,小儿科重症特别护理时呼吸监测是必要的。Sondergaard等[10]使用光纤传感器用于小儿呼吸时监测气管内压力,该压力传感器由直径0.42 mm微型硅传感器芯片和直径0.25 mm光纤传导纤维组成,它是基于光纤干涉原理设计而成的,设计变量可以涵盖不同的压力范围。实验结果表明,在气小儿管插管时光纤传感器提供了一个可靠的和有前景的气管压力测量。Silberberg等[11]使用光纤传感器测量极低出生体质量婴儿气道压力。结果发现,光纤传感器直接测量通风良好婴儿的方法是可行的,结果是可靠的,且该结果可以推导肺功能的信息,指导呼吸机管理。 2.5 对心血管及血液压力的监测 Narendran 等[12]介绍了一种基于白光干涉的光纤压力传感器。将一个薄膜的光楔干涉仪放置在输出端检测反射信号,这是一个独特的膜片偏转,这种检测方案的几个关键特性,包括低漂移、精度高、且对光损耗因子不敏感。Reesink等[13]指出光纤系统血液压力监测时具有可靠性及高保真性。 Woldbaek等[14]将一种新的光纤压力记录系统,即Samba用于记录离体老鼠的心血管系统测量。Samba由一个薄的光纤(外直径为 0.25 mm)和硅芯充填的传感器组成,该传感器位于光纤末端。传感器芯片上的膜可以随着压力的改变而发生形变。该形变可以被光纤系统检测出来。实验发现Samba传感器可以准确测量鼠左心室压力,且具有稳定性高,不影响实验鼠的中心血液动力学变化等优点。Myllylä等[15]提出利用光纤传感器在磁共振扫描时无创性监测血压。以动脉血压里脉搏波传播速度为基础,该装置利用获得的结果来估计舒张压。脉冲传播时间被放置于胸主动脉和颈动脉的两个光纤加速器所测量。该加速器由两束抗静电的纤维和一个悬臂梁组成,悬臂梁的自由端弯曲成90°,这样便可以作为反射面。光纤纤维可以用作光源,并且可以接收反射光。实验发现MRI检查与非侵入性的光纤传感器测压具有兼容性。 心包穿刺具有穿刺失败和穿孔的高风险。Tucker-Schwartz等[16]使用了精密的光纤压力传感器和一个新的信号分析法,用于识别可允许的安全穿刺进入心包腔的压力频率。实验表明,使用压力频率信号识别心包穿刺的部位具有很高的功效,该结果可以为心脏病专家提供心包压力频率信号,这样可以更安全地行心包穿刺,并为某些心脏病患者提供重要的治疗方法。 2.6 椎间盘压力测量 椎间盘压力是描述脊柱负载条件的一种重要方法,了解椎间盘压力机制对于椎间盘损伤和退化的病因学十分重要。 Guehring等[17]将光纤压力传感器用于测定椎间盘压力,该光纤传感器由一个硅传感元件和附着的光纤纤维组成。通过测量兔的腰椎压力,发现光纤压力传感器装置是一种评价椎间盘压力的一种准确方法,且不会对椎间盘造成重大损伤。 Nesson等[18]将微型光纤压力传感器用于测量椎间盘破裂时压力,传感器元件由一个隔膜结构作为压力传感器,当传感器元件被插到啮动物的尾巴里,在外界压力下,隔膜产生形变,隔膜的偏向为压力改变的一个函数,可以被光纤诊断系统检测出来。实验发现,光纤传感器测出的椎间盘核压力与外在负载的压力呈线性相关,且这种线性关系与之前测得人类和猪椎间盘破裂时压力的结果一致。Dennison等[19]使用光纤布拉格光栅测量腰椎间盘压力,所测得的数据与之前使用其他类型传感器测得的压力一致,且与现有的压力测量方法相比,使用光纤布拉格光栅测量压力对脊柱生物机械学有很少的破坏性。 2.7 分娩时子宫内压力测量 孕妇分娩时子宫内压力是变化的,目前亟需一种简单可靠的方法用来测量分娩活跃期子宫内压力变化。Svenningsen等[20]将光纤传感器用于测量子宫内压力,光纤传感器由两端分开的光纤束组成,该光纤束末端由压力敏感的不锈钢膜组成。光纤在圆锥体发光,其强度由光纤的物理性能决定。大量孕妇分娩实验结果表明该光纤传感器测得的压力与实际内压力高度一致性,且不会对胎儿有损害。 2.8 结肠测压的应用 便秘影响了15%-27%的西方人群[21-22]。结肠传播的压力波或者传播的顺序是肠腔运动和排便的重要决定因素[23-24]。结肠传播顺序的改变是结肠功能紊乱的重要标记[25-27]。Arkwright等[28]使用光纤导管测量结肠压力,发现该传感器可以记录人类结肠的24 h蠕动收缩,并能分析结肠复杂的运动模式。 2.9 足底压力和剪切力测量 糖尿病是一种影响成千上百万人生活质量的一种疾病,糖尿病引起的下肢并发症包括足底溃疡,该并发症可以导致感染或后来的截肢。足底压力被认为与溃疡的发展有关[29-30],Delbridge 等[31]提出剪切力是溃疡进展的一个重要的组成部分。Wang等[32]将光纤传感器用来测量足底压力和剪切力,该传感器由被弹性衬垫分开的垂直于行和列的光纤纤维组成,两束相邻垂直光纤维的物理形变引起强度衰减以宏观弯曲形式表现出来,以该弯曲为基础,绘制正常的和剪切压力图,实验结果发现该传感器可以用来测量足底压力和剪切力,且重复性较好。 2.10 食道曲张静脉压力监测 食管静脉曲张出血是肝硬化严重的和威胁生命的并发症之一。决定曲张静脉是否破裂出血的直接因素是血管壁张力。根据流体学Laplace定律:血管壁张力=(血管内压-血管外压)×血管口径/血管厚度,血管内压力是根本因素,血管内压高,血管扩张而直径增大,管壁厚度随之变薄,于是血管壁张力增大,当张力越过管壁弹性极限时血管破裂而发生大出血[33]。研究发现,曲张静脉压力较肝静脉压力梯度(HVPG)能更直接预测出血风险并判断防治出血效果,因此测量食道曲张静脉压显得尤为重要[34-35]。 血管穿刺测压是检测食道曲张静脉压“金标准”,但有引起出血、感染的风险[36]。无创性测压方法是检测技术发展的方向,但由于压力传感器受食管蠕动等影响其稳定性,因此测压结果存在主观误差[37]。 近年来研究发现,光纤压力传感器具有传统压力传感器所不可比的优点:灵敏度高、动态范围大、响应速度快、稳定性高[1],并已成功应用于许多领域,如血管内血压、颅内压、心内压、膀胱和尿道压力等检测已替代传统方法[38-39]。基于此,作者与江苏久虹医疗器械有限公司合作,开发“光纤压力传感器的食管曲张静脉测压系统”,该光纤压力传感器由光接收器、光电转换、数模转换光源和电源管理等5个模块组成,设计一个包括压力敏感探头(由加拿大opsens solutions研制)、接收装置和数据处理终端为一体的测量系统,将压力敏感探头过内窥镜的活检通道置于探测部位,再将探头获取的压力应变光信号通过光纤传导至接收装置,在接收装置中设置光电转换模块和模/数(A/D)转换模块,依次将测量数据调并转换为模拟电信号再转换为数字信号。选择一款合适的掌上电脑(PDA)作为采样信号的处理终端,通过数据接口与接收装置链接,分析报告并记录存储测量数据。Kong等[40]研究发现该传导系统可通过胃镜活检孔通道2 mm插入,性能测试可获得稳定的压力曲线,但更大范围临床病例检测尚在进一步研究中。与其他测压方法相比,该传感器准确性高、体积小(可通过内镜活检通道)、安全性好、稳定性好,测压技术适用于普通内镜医师掌握,但容易受患者呼吸、咳嗽等影响导致传感器与曲张静脉壁无法紧贴,造成压力曲线波动,为了获得稳定的压力曲线,操作时应必须注意以下几点:检查前肌注杜冷丁,山莨菪碱,地西泮,以减少食管蠕动的影响;操作时要固定好传感器,使传感器膜与食道曲张静脉壁贴紧,待压力曲线稳定后记录压力值;在食管蠕动期间,传感器膜可能脱离曲张静脉,此时应该重新调零将传管器膜与曲张静脉血管壁贴紧后再进行压力测定。"
[1] 蒲晓允,左世友.光纤生物传感器技术及其应用[J].重庆医学, 2006,35(17):1537-1538.
[2] Peterson JI,Vurek GG.Fiber-optic sensors for biomedical applications.Science.1984;224(4645):123-127.
[3] Chavko M,Koller WA,Prusaczyk WK,et al.Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain.J Neurosci Methods.2007;159(2):277-281.
[4] Zhong J,Dujovny M,Park HK,et al.Advances in ICP monitoring techniques. Neurol Res.2003;25(4):339-350.
[5] Aucoin PJ,Kotilainen HR,Gantz NM,et al.Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am J Med.1986;80(3):369-376.
[6] Murtha L,McLeod D,Spratt N.Epidural intracranial pressure measurement in rats using a fiber-optic pressure transducer.J Vis Exp.2012;25(62):1-7.
[7] Tamburrini G,Dirocw C,Velardi F,et al.Prolonged intracranial pressure monitoring in non-traumatic pediatric neurosurgical diseases.Med Sci Monit. 2004;10(4):53-63.
[8] Gelabert-González M,Ginesta-Galan V,Sernamito-García R,et al.The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien). 2006;148(4):435-441.
[9] Takeuchi S,Tohara H,Kudo H,et al.An optic pharyngeal manometric sensor for deglutition analysis.Biomed Microdevices.2007;9(6):893-899.
[10] Sondergaard S,Karason S,Hanson A,et al.Direct Measurement of Intratracheal Pressure in Pediatric Respiratory Monitoring.Pediatr Res.2002;51(3):339-345.
[11] Silberberg AR,Sandberg K.Direct measurement of airway pressure in ventilated very low birth weight infants. Conf Proc IEEE Eng Med Biol Soc.2006;1:2868-2870.
[12] Narendran N,Corbo MA,Smith W. Fiber optic pressure sensor for biomedical applications.ASAIO J.1996;42(5):500-506.
[13] Reesink KD,van der Nagel T,Bovelander J,et al.Feasibility study of a fiber-optic system for invasive blood pressure measurements.Catheter Cardiovasc Interventions.2002; 57(2): 272-276.
[14] Woldbaek PR,Strømme TA,Sande JB,et al.Evaluation of a new fiber-optic pressure recording system for cardiovascular measurements in mice.Am J Physiol Heart Circ Physiol. 2003; 285(5):2233-2239.
[15] Myllylä TS,Elseoud AA,Sorvoja HS,et al.Fibre optic sensor for non-invasive monitoring of blood pressure during MRI scanning. J Biophotonics. 2011;4(1-2):98-107.
[16] Tucker-Schwartz JM,Gillies GT,Mahapatra S.Improved pressure-frequency sensing subxiphoid pericardial access system: performance characteristics during in vivo testing.IEEE Trans Biomed Eng.2011;58(4):845-852.
[17] Guehring T,Unglaub F,Lorenz H,et al.Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model.Eur Spine J.2006;15(5):597-604.
[18] Nesson S,Yu M,Zhang X,et al.Miniature fiber optic pressure sensor with composite polymermetal diaphragm for intradiscal pressure measurements.J Biomed Opt.2008;13(4):1-19.
[19] Dennison CR,Wild PM,Byrnes PW,et al.Ex vivo measurement of lumbar intervertebral disc pressure using fibre-Bragg gratings.J Biomech.2008;41(1):221-225.
[20] Svenningsen L,Jensen O.Application of fiber optics to the clinical measurement of intra-uterine pressure in labor.Acta Obstet Gynecol Scand. 1986;65(6):551-555.
[21] Thompson WG,Irvine EJ,Pare P,et al.Functional gastrointestinal disorders in Canada: first population-based survey using Rome II criteria with suggestions for improving the questionnaire.Dig Dis Sci. 2002;47(1):225-235.
[22] Irvine EJ,Ferrazzi S,Pare P,et al.Health-related quality of life in functional GI disorders: focus on constipation and resource utilization. Am J Gastroenterol.2002;97(8):1986-1993.
[23] Cook IJ,Furukawa Y,Panagopoulos V,et al.Relationships between spatial patterns of colonic pressure and individual movements of content.Am J Physiol Gastrointest Liver Physiol.2000;278(2):329-341.
[24] Dinning PG,Szczesniak MM,Cook IJ.Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon.Neurogastroenterol Motil.2008;20(5):512-520.
[25] Rao SS,Sadeghi P,Beaty J,et al.Ambulatory 24-hour colonic manometry in slow-transit constipation.Am J Gastroenterol. 2004;99(12):2405-2416.
[26] Bassotti G,Gaburri M,Imbimbo BP,et al.Colonic mass movements in idiopathic chronic constipation.Gut. 1988; 29(9):1173-1179.
[27] Bampton PA,Dinning PG,Kennedy ML,et al.Prolonged multipoint recording of colonic manometry in the unprepared human colon - providing insight into potentially relevant pressure wave parameters.Am J Gastroenterol. 2001;96(6): 1838-1848.
[28] Arkwright JW,Underhill ID,Maunder SA,et al.Design of a high-sensor count fibre optic manometry catheter for in-vivo colonic diagnostics.Opt Express. 2009;17(25):22423-22431.
[29] Boulton AJ,Hardisty CA,Betts RP,et al.Dynamic foot pressure and other studies as diagnostic and management aids in diabetic neropathy.Diabetes Care. 1983;6(1):26-33.
[30] Veves A,Murray HJ,Young MJ,et al.The risk of foot ulceration in diabetic patients with high foot pressure:a prospective study. Diabetologia. 1992;35(7):660-663.
[31] Delbridge L,Ctercteko G,Fowler C,et al.The aetiology of diabetic neuropathy ulceration of the foot.Br J Surg.1985; 72(1):1-6.
[32] Wang WC,Ledoux WR,Sangeorzan BJ,et al.A shear and plantar pressure sensor based on fiber-optic bend loss.J Rehebil Res Dev.2005;42(3):315-326.
[33] Lebrec D,Vinel JP,Dupas JL.Complications of portal hypertension in adults:a French consensus.Eur J Gastmenterol Hepatol.2005;17(4):403-410.
[34] Bosch J,Bordas JM,Rigau J.Noninvasive measurement of the pressure of esophageal varices using an endoscopic gauge:comparison with measurements by variceal puncture in patients undergoing endoscopic sclerotherapy. Hepatology. 1986;6(4):667-672.
[35] Nevens F,Bustami R,Scheys I,et al.Variceal pressure is a factor predicting the risk of a first variceal bleeding: a prospective cohort study in cirrhotic patients.Hepatology. 1998;27(1):15-19.
[36] Sarin SK,Saraya A.Effects of intravenous nitroglycerin and metoclopramide on intravariceal pressure:a double blind ranodomized study. Am J Gastroenterology.1995;90(1): 48-53.
[37] Escorsell A,Bosch J.Endoscopic Assessment of portal hypertension including variceal pressure measurements.in AJ. Sanyal, VH. Shah (eds). Clinical gastroenterology: Portal hypertension. 3 nd edn. Humana Press Inc.:2005;155-164.
[38] Bolander R,Mathie B,Bir C,et al.Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann Biomed Eng.2011;39(10):2550-2559.
[39] 孙素梅,陈洪耀,尹国盛.光纤传感器的基本原理及在医学上的应用[J].中国医学物理学杂志,2008,25(5):846-50.
[40] Kong DR,He BB,Wu AJ,et al.Fiber optic sensor for measuring variceal pressure.Endoscopy.2013;Suppl 2 UCTN:55-56. |
[1] | Xie Yu, Zhang Cheng-huan, Liu Yun. Mechanical device for prevention of deep vein thrombosis on patient compliance: a meta-analysis based on observational studies [J]. Chinese Journal of Tissue Engineering Research, 2016, 20(35): 5304-5312. |
[2] | He Yan-ping, Ma De-chun, Li Lei, Zhang Li, Zheng Shuang, Dong Ke-xin. Hemocompatibility and surface modification of artificial blood vessel materials [J]. Chinese Journal of Tissue Engineering Research, 2015, 19(8): 1272-1276. |
[3] | Wu Qiong, Hu Wei-ping. Clinical common problems after restoration with telescopic crown-retained removable partial dentures [J]. Chinese Journal of Tissue Engineering Research, 2015, 19(8): 1301-1305. |
[4] | Li Bing-ting, Jia Ying-zhen, Liu Zhi-fang, Song Yuan, Hou Xiao-wei. Effect of freeze-dried bone xenograft and platelet-rich fibrin compound on osteogenesis and osseointegration of alveolar bone defects [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(52): 8376-8381. |
[5] | Wang Xiao-dong, Zhang Yong-hong. Preparation and performance of recombinant human bone morphogenetic protein-2-poly(hydroxybutyrate-co-hydroxyoctanoate) nanospheres [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(52): 8405-8408. |
[6] |
Wang Xue-ming, Xing Chang-min, Li Nan.
Preparation methods and in vitro release of Resina Draconis-loaded biodegradable polymeric hollow nanoparticles
|
[7] | Feng Chao, Li Zhe, Lv Xiang-guo, Xu Yue-min, Fu Qiang. In vitro preparation and biochemical evaluation of oxygen generative keratin/silk fibroin compound biomaterial [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(52): 8480-8486. |
[8] | Li Tian-shi, Zeng Wen-ni, He Jun-jun. Chitin and its derivatives inhibit scar formation [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(52): 8504-8508. |
[9] | Ma Song-feng, Cao Hui, Zheng Feng, Qiao Jun, Zhang Guo-ming. Concomitant cardiac valve replacement and coronary artery bypass grafting [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(5): 699-704. |
[10] | Ruan Guang-ping, Yao Xiang, Liu Ju-fen, Shu Fan, He Jie, Yang Jian-yong, Pang Rong-qing, Pan Xing-hua. Role of human umbilical cord mesenchymal stem cells: cell transplantation, immuoregulation and target cells [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(41): 6714-6718. |
[11] | Lu Hua-ding, Lian Li-yi, Chen Ming-wei, Dai Yu-hu. Cloning and expression of Asperguillus endo-chitosanase gene in Escherichia coli [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(34): 5490-5496. |
[12] | Fan Zhong-bao, Rong Da-qing, Liu Qing-feng. Prolene hernia system versus polypropylene mesh plug in tension-free hernia repair [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(34): 5535-5539. |
[13] | Li A-li. Absorbable ligating clip in laparoscopic hysterectomy [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(34): 5561-5565. |
[14] | Zhao Hua-xiang, Zhao Shan-mei, Xin Xin, Zhang Bo, Ma Ning-hu, Li Mu-jia, Zhang Meng-qi, Li Ang . Inflamed dental pulp stem cells: initial research and future development [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(23): 3756-3761. |
[15] | Huang Xiao-nan. Percutaneous vertebroplasty for treatment of osteoporotic vertebral fractures: high-viscosity versus low-viscosity bone cement [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(16): 2461-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||