Chinese Journal of Tissue Engineering Research ›› 2019, Vol. 23 ›› Issue (20): 3255-3260.doi: 10.3969/j.issn.2095-4344.1149
Previous Articles Next Articles
Zhang Jun, You Qi, Zou Gang, Ge Zhen, Liu Yi
Online:
2019-07-18
Published:
2019-07-18
Contact:
Liu Yi, Professor, Master’s supervisor, First Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
About author:
Zhang Jun, Master candidate, First Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
Supported by:
the Science and Technology Foundation of Guizhou Province, No. LH[2017]7015 (to ZG)
CLC Number:
Zhang Jun, You Qi, Zou Gang, Ge Zhen, Liu Yi. In situ tissue engineering in the field of bone and cartilage repair: application and problems [J]. Chinese Journal of Tissue Engineering Research, 2019, 23(20): 3255-3260.
2.1 原位组织工程技术的概述 原位组织工程技术又被称为原位诱导再生技术,是指不使用传统组织工程技术所需要的外来种子细胞,通过性能良好的支架材料与体内微环境的相互作用,促进并诱导自体干细胞增殖、迁移并黏附在支架材料上,进而实现损伤组织的原位再生[21]。 原位组织工程技术具有以下特点[21]:利用自体细胞特别是干细胞进行组织修复,避免了体外分离培养种子细胞的繁琐过程,并且避免了体外培养种子细胞容易污染的缺点;由于该过程没有添加外源性种子细胞,因此极大程度地避免了免疫排斥反应;通过一定的手段使原位细胞迁徙到病变部位,从而达到修复效果,该过程更加接近于人体损伤组织的自我修复,将生物体视为完整的生物反应器,这样的修复效果或许是更佳的。 由于原位组织工程技术不涉及对体外细胞和材料进行广泛操作来产生功能化的组织,而是借助外在支架材料来诱导受损部位的自行修复,因此最终修复的组织与机体本身具有很好的相容性和适应性,并且远期功能也有一定的保障。原位组织再生的成功依赖于:将宿主干细胞或祖细胞有效募集到植入生物材料支架中,并将浸润细胞诱导成组织特异性细胞谱系,以用于功能性组织再生。 2.2 原位组织工程技术的3大要素 2.2.1 种子细胞(宿主细胞) 虽然原位组织工程不需要外源的种子细胞,但仍需要招募体内自体的内源性细胞作为种子细胞,参与损伤修复。其中,骨髓间充质干细胞是最先应用于组织工程研究的种子细胞[22],由于其具有较好的增殖能力及较强的多向分化能力,因此在组织工程领域得到了广大学者的青睐。相关研究表明,当创伤应激发生时,机体可动员体内的骨髓间充质干细胞进入外周血,然后经过复杂的过程最终归巢到损伤部位,进行损伤组织修复[23]。在骨和软骨损伤过程中,骨髓间充质干细胞是最容易被募集的一种干细胞,并且具有较强的成骨和成软骨作用,因此成为骨和软骨损伤修复过程中首选的种子细胞[24-25]。 如何促进支架材料的血管化,是原位组织工程技术的关键,也是难点,虽然目前很多学者通过募集内皮细胞到受损组织,使其向血管分化,但是内皮细胞存活力低、黏附性差且易老化[26-28]。因此,学者们又将目光转移至内皮祖细胞。内皮祖细胞是内皮细胞的前体细胞,主要分布在骨髓中,由于其具有较好的分化能力和增殖能力,因此很多研究者将其作为原位组织工程技术的种子细胞[29-30]。此外,也有研究者将骨膜来源的细胞应用于骨组织工程中,通过诱导它来促进损伤部位的修 复[31-32]。 2.2.2 支架材料 支架材料是原位组织工程的关键部分,因为其结构可用于模拟体内环境,作为细胞及细胞因子的载体引导细胞生长和浸润,并将细胞募集到损伤部位,让细胞在受损部位发挥作用;此外,支架材料还能将细胞和细胞因子局限在受损部位,防止其随着液体的外流而失去相应效果。其中,支架材料的结构尤其重要,主要是孔隙率和微观结构,生物材料的孔隙率和微观结构可调节细胞浸润和炎症反应,因此目前常采用多种技术来改变生物材料的结构和孔隙率[33-34]。当今应用于原位组织工程中的支架材料主要分2大类:合成高分子材料和天然高分子材料,合成高分子材料主要有聚羟丁酯、聚乳酸和聚乙醇酸等[35],天然高分子材料主要有壳聚糖、丝素蛋、纤维素等[36]。 2.2.3 细胞因子 细胞因子是原位组织工程技术的又一大核心要素,其能够促进细胞的增殖分化,诱导细胞趋化、迁徙,此外还能够与细胞膜上特异性的分子受体结合,增强细胞的黏附作用。目前研究发现,多数细胞因子与干细胞趋化有着密切关系,其中基质细胞衍生因子是目前研究得最多的一种趋化因子[37]。Liu等[38]实验证明,基质细胞衍生因子1在促进骨损伤的内源性修复方面发挥重要作用。此外,还有诸多细胞因子具有趋化作用,在原位组织工程技术中发挥重要作用[39-42],如:胸腺表达趋化因子(又称胸腺趋化因子25)、单核细胞趋化蛋白1、血管内皮生长因子、血小板衍生生长因子等。但是,由于原位组织工程领域中所使用的细胞因子在体内半衰期较短,很容易降解,因此限制了这些细胞因子对体内细胞的招募和迁移作用。所以,很多研究者通过使用一些物理和化学方法改变细胞因子在生物体内的状态,来促进其在体内的长期有效释放[43-47]。 2.3 原位组织工程技术在骨损伤修复领域的应用 骨缺损一直是临床的一大难题,困扰着当今的临床医生。随着组织工程技术的快速发展,用于骨损伤修复的相关技术得到了新的提高。最近几年,原位组织工程技术应用于骨损伤修复的研究不断深入,并取得了良好的效果。原位组织工程技术修复骨缺损最关键的问题就是寻找一种骨特异性支架,这也是当今的一大难点。骨特异性支架材料既要具有较强的机械性能又要具有最小的免疫和炎症反应,同时还能招募损伤部位周边细胞的迁移并能够促进细胞的增殖和分化。目前应用于原位骨再生的生物材料包括磷酸钙、硫酸钙和羟基磷灰石。 目前很多研究证实,基质细胞衍生因子1α在骨修复方面具有很重要的作用,其能够募集内源性祖细胞和干细胞迁移到损伤部位,从而能进行组织损伤的修复和再生[48],将基质细胞衍生因子1α与不同支架材料复合促进骨缺损的原位修复已取得了较大成就。 Shi等[49]在体外将基质细胞衍生因子1α与胎牛脱钙骨相结合,构建了功能化骨替代物,该复合支架材料能够不断、可控的释放基质细胞衍生因子1α,通过动员干细胞来修复缺损骨组织。将该复合支架材料植入大鼠股骨缺损模型中,发现植入后3 d能够有效动员CD34+和c-kit+内源性干细胞归巢到受损部位,micro CT结果显示受损部位的骨矿化和骨积累明显增加,并且还发现骨保护素和骨桥蛋白早期表达明显上调,成骨细胞数量也很快增加。Eman等[50]将低浓度的基质细胞衍生因子1a、明胶和生物陶瓷复合制备了复合生物材料支架,通过植入裸鼠皮下并在植入后6周后取材发现:成骨相关指标明显升高,如Ⅰ型胶原、骨钙素等,并且还意外的发现该复合支架具有成血管的作用。该研究首次证明了低浓度基质细胞衍生因子1a可有效募集内源性细胞,并且募集的细胞具有成骨分化潜能。Niu等[51]成功制备了二氧化硅渗透的三维胶原支架,该支架具有高度的生物相容性和可降解性,然后将基质细胞衍生因子1a与该支架复合并移植到小鼠体内,6周后发现该复合支架具有异位成骨和毛细血管生成的作用。骨形态发生蛋白能够诱导间充质干细胞成骨分化,同样也具有招募受损部位周围干细胞迁徙并向骨分化的能力[52]。此外,还有很多细胞因子可与不同的支架材料复合,诱导周边干细胞向受损的部位迁移并进一步成骨分化,达到修复骨缺损的目 的[53]。 2.4 原位组织工程技术在软骨损伤修复领域的应用 由于软骨没有血管和神经,因此损伤后很难自行修复,即使 使用手术或者其他办法治疗后仍不能得到很好的修复。原位组织工程技术的出现,为软骨损伤修复提供了新的思路,同时也弥补了传统组织工程技术的某些缺陷。原位组织工程技术软骨修复的机制主要是:通过植入可降解的多孔支架材料,使其在体内能够诱导自体干细胞迁移并聚集在缺损软骨区域,并且最终分化为软骨细胞,实现软骨修复。 Filová等[54]构建了一种新型的无细胞支架材料,该支架将聚乙烯醇纳米纤维和透明质酸/Ⅰ型胶原/纤维蛋白水凝胶复合,其中聚乙烯醇纳米纤维里面包含有脂质体、碱性成纤维细胞生长因子和胰岛素,通过控制性释放使碱性成纤维细胞生长因子和胰岛素这些细胞因子持续发挥作用,释放出的细胞因子能够从骨髓中募集间充质干细胞。 Chen等[55]制备了一种胶原支架材料,该支架材料具有良好的机械性能,并且能够在体外诱导骨髓间充质干细胞在支架中的迁徙。随后将基质细胞衍生因子1与该支架复合来进一步促进其诱导细胞迁徙的能力,并将该复合支架植入兔软骨缺损模型中,术后6,12周取出标本观察软骨修复情况,实验发现该复合支架材料具有促进软骨再生和修复的作用,最终形成了类似软骨的结构。其机制主要是该复合支架材料能够募集软骨损伤部位周围的骨髓间充质干细胞,发挥软骨损伤修复作用。 Cook等[56]也通过将骨形态发生蛋白7与支架材料复合,修复犬股骨髁软骨损伤,结果显示该软骨损伤模型得到了很好地修复,其主要也是通过诱导内源性骨髓间充质干细胞来发挥修复作用的。 此外,微骨折手术是当今治疗软骨损伤常用的一种手段,主要是使软骨下骨发生微骨折,让骨髓腔中的间充质干细胞进入关节腔来进行原位损伤修复。但是,单纯的微骨折手术用于软骨损伤修复目前也面临着很多的问题和不足,因此近几年来很多学者通过将负载有细胞因子的支架材料,与微骨折技术联合来促进软骨损伤的原位修复,并取得了很不错的结果[57-58]。"
[1] Wu C,Chang J.Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors.J Controll Release.2014;193:282-295.[2] Merli M,Moscatelli M,Mariotti G,et al.Autogenous bone versus deproteinised bovine bone matrix in 1-stage lateral sinus floor elevation in the severely atrophied maxilla: a randomised controlled trial.Eur J Oral Implantol. 2013;6(1):27-37.[3] Terheyden H,Jepsen S,Möller B,et al.Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant human osteogenic protein-1.A histometric study in miniature pigs. Clin Oral Implants Res.1999;10(6):510-521.[4] Spinneto R,Stavropoulos A,Coletti FL,et al.Remodeling of cortical and corticocancellous fresh-frozen allogeneic block bone grafts-a radiographic and histomorphometric comparison to autologous bone grafts. Clin Oral Implants Res.2015;26(7):747-752.[5] Aroni MAT,Spolidório LC,Andersen OZ,et al.Loading deproteinized bovine bone with strontium enhances bone regeneration in rat calvarial critical size defects. Clin Oral Investig. 2018. doi: 10.1007/s00784-018-2588-6.[Epub ahead of print][6] Kotsakis GA,Salama M,Chrepa V,et al.A randomized, blinded, controlled clinical study of particulate anorganic bovine bone mineral and calcium phosphosilicate putty bone substitutes for socket preservation.Int J Oral Maxillofac Implants.2014;29(1):141-151.[7] Toloue SM,Chesnoiu-Matei I,Blanchard SB. A clinical and histomorphometric study of calcium sulfate compared with freeze-dried bone allograft for alveolar ridge preservation.J Periodontol.2012;83(7):847-855.[8] Tal H.Autogenous masticatory mucosal grafts in extraction socket seal procedures: a comparison between sockets grafted with demineralized freeze-dried bone and deproteinized bovine bone mineral. Clin Oral Implants Res.2010;10(4):289-296.[9] Centurion LS,Jarvinen E,Muhonen V,et al.An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering.Drug Deliv Transl Res.2014;4(2):149-158.[10] Vinatier C,Mrugala D,Jorgensen C,et al.Cartilage engineering: a crucial combination of cells, biomaterials and biofactors.Trends Biotechnol.2009;27(5):307-314.[11] Temenoff JS,Mikos AG.Review: tissue engineering for regeneration of articular cartilage. Biomaterials.2000; 21(5):431-440.[12] Huey DJ,Hu JC,Athanasiou KA.Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109): 917-921.[13] Nukavarapu SP,Dorcemus DL.Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv.2013;31(5):706-721.[14] Beris AE,Lykissas MG,Papageorgiou CD,et al.Advances in articular cartilage repair.Injury. 2005;36 Suppl 4:S14-23.[15] Lotz MK,Carames B.Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol.2011;7(10):579-587.[16] Gavenis K,Schmidt-Rohlfing B,Andereya S,et al. A cell-free collagen type I device for the treatment of focal cartilage defects.Artif Organs.2010;34(1):79-83.[17] Kon E,Delcogliano M,Filardo G,et al.A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury.2010;41(7):693-701.[18] Coburn JM,Gibson M,Monagle S,et al.Bioinspired nanofibers support chondrogenesis for articular cartilage repair.Proc Natl Acad Sci U S A. 2012;109(25): 10012-10017.[19] Smith GD,Knutsen G,Richardson JB. A clinical review of cartilage repair techniques.J Bone Joint Surg Br. 2005; 87(4):445-449.[20] Zhang X,Zhang Y.Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochem Biophys. 2015;72(3):777-782.[21] Sengupta D,Waldman SD,Li S,et al.From in vitro to in situ tissue engineering.Ann Biomed Eng. 2014;42(7): 1537-1545. [22] BelemaBedada F,Uchida S,Martire A,et al.Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNTmediated clustering of CCR2.Cell Stem Cell. 2008; 2(6):566-575. [23] Fu WL,Xiang Z,Huang FG,et al.Coculture of peripheral bloodderived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone.Tissue Eng Part A.2015;21(5-6):948-959.[24] Evans CH,Palmer GD,Pascher A,et al.Facilitated endogenous repair: making tissue engineering simple, practical, and economical.Tissue Eng. 2007;13(8): 1987-1993.[25] Chen FM,Wu LA,Zhang M,et al.Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials.2011;32(12):3189-3209 [26] Kaigler D,Wang Z,Horger K,et al.VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects.J Bone Miner Res.2006;21(5):735-744.[27] He Q,Zhao Y,Chen B,et al.Improved cellularization and angiogenesis using collagen scaffolds chemically conjugated with vascular endothelial growth factor.Acta Biomater.2011;7(3): 1084-1093.[28] Guo R, Xu S, Ma L, et al. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials, 2010, 31(28): 7308-7320.[29] Wu S, Wang Z, Bharadwaj S, et al. Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol,2011, 186(2): 640-647.[30] Fu WL,Xiang Z,Huang FG,et al.Combination of granulocyte colony-stimulating factor and CXCR4 antagonist AMD3100 for effective harvest of endothelial progenitor cells from peripheral blood and in vitro formation of primitive endothelial networks.Cell Tissue Bank. 2016;17(1): 161-169. [31] Rosales-Rocabado JM,Kaku M,Kitami M,et al.Osteoblastic differentiation and mineralization ability of periosteum- derived cells compared with bone marrow and calvaria- derived cells.J Oral Maxillofac Surg. 2014;72(4):694.e1-e9.[32] Lin Z,Fateh A,Salem DM,et al.Periosteum: biology and applications in craniofacial bone regeneration.J Dent Res. 2014;93(2):109-116. [33] Singh D,Singh MR.Development of antibiotic and debriding enzyme-loaded PLGA microspheres entrapped in PVA-gelatin hydrogel for complete wound management. Artif Cells Blood Substit Immobil Biotechnol.2012;40(5):345-353.[34] Sharifiaghdas F,Naji M,Sarhangnejad R,et al.Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering.Urol J.2014; 11(3):1620-1628. [35] Rezwan K,Chen QZ,Blaker JJ,et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials. 2006;27(18): 3413-3431. [36] Chang NJ,Jhung YR,Yao CK,et al.Hydrophilic gelatin and hyaluronic acid-treated PLGA scaffolds for cartilage tissue engineering.J Appl Biomater Funct Mater. 2013;11(1): e45-e52.[37] Thevenot PT,Nair AM,Shen J,et al.The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials.2010;31(14):3997-4008.[38] Liu X,Zhou C,Li Y,et al.SDF-1 promotes endochondral bone repair during fracture healing at the traumatic brain injury condition.PLoS One.2013;8(1):e54077.[39] Binger T,Stich S,Andreas K,et al.Migration potential and gene expression profile of human mesenchymal stem cells induced by CCL25.Exp Cell Res.2009;315(8):1468-1479.[40] Ringe J,Strassburg S,Neumann K,et al.Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2.J Cell Biochem.2007;101(1):135-146.[41] Pin AL,Houle F,Fournier P,et al.Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression.J Biol Chem.2012; 287(36):30541-30551.[42] Cheng P,Gao ZQ,Liu YH,et al.Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1.Neurosci Lett.2009;451(1):52-56. [43] Bader AR,Li T,Wang W,et al.Preparation and characterization of SDF-1α-chitosan-dextran sulfate nanoparticles.J Vis Exp.2015;(95):52323.[44] Dutta D,Fauer C,Mulleneux HL,et al.Tunable controlled release of bioactive SDF-1α via protein specific interactions within fibrin/nanoparticle composites.J Mater Chem B.2015; 3(40): 7963-7973.[45] Tang T,Jiang H,Yu Y,et al.A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen speciesresponsive nanoparticles containing SDF-1α.Int J Nanomedicine.2015;10: 6571-6585.[46] Kao WT,Lin CY,Lee LT,et al.Investigation of MMP-2 and -9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay.Anticancer Res.2008;28(4B): 2109-2120.[47] Wang D,Zhu H,Liu Y,et al.The low chamber pancreatic cancer cells had stem-like characteristics in modified transwell system: is it a novel method to identify and enrich cancer stem-like cells? Biomed Res Int.2014;2014:760303. [48] Dashnyam K,Perez R,Lee EJ,et al.Hybrid scaffolds of gelatinsiloxane releasing stromal derived factor-1 effective for cell recruitment.J Biomed Mater Res A. 2014;102(6): 1859-1867. [49] Shi J,Sun J,Zhang W,et al.Demineralized bone matrix scaffolds modified by CBD-SDF-1α promote bone regeneration via recruiting endogenous stem cells. ACS Appl Mater Interfaces.2016.[Epub ahead of print] [50] Eman RM,Oner FC,Kruyt MC,et al.Stromal cell-derived factor-1 stimulates cell recruitment, vascularization and osteogenic differentiation.Tissue Eng Part A. 2014;20(3-4): 466-473.[51] Niu LN,Jiao K,Qi YP,et al.Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration. FASEB J. 2012; 26(11):4517-4529. [52] Jovanovic SA,Hunt DR,Bernard GW,et al.Bone reconstruction following implantation of rhBMP-2 and guided bone regeneration in canine alveolar ridge defects.Clin Oral Implants Res.2007;18(2):224-230. [53] Sun JL,Jiao K,Niu LN,et al.Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration.Biomaterials. 2017; 113:203-216. [54] Filová E,Rampichová M,Litvinec A,et al.A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs.Int J Pharm. 2013;447(1-2): 139-149.[55] Chen P,Tao J,Zhu S,et al.Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing.Biomaterials.2015;39:114-123. [56] Cook SD,Patron LP,Salkeld SL,et al.Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs.J Bone Joint Surg Am.2003;85-A(Suppl 3):116-123. [57] 张洪亮,姜鑫,张健.微骨折术联合关节内注射tPRP修复兔膝关节软骨缺损的观察[J].辽宁医学院学报, 2013,34(2):27-29.[58] Dai Y,Shen T,Ma L,et al.Regeneration of osteochondral defects in vivo by a cell-free cylindrical poly (lactide-co-glycolide) scaffold with a radially oriented microstructure. J Tissue Eng Regen Med. 2018;12(3): e1647-e1661. |
[1] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[2] | Jiang Yong, Luo Yi, Ding Yongli, Zhou Yong, Min Li, Tang Fan, Zhang Wenli, Duan Hong, Tu Chongqi. Von Mises stress on the influence of pelvic stability by precise sacral resection and clinical validation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1318-1323. |
[3] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[4] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[5] | Wei Wei, Li Jian, Huang Linhai, Lan Mindong, Lu Xianwei, Huang Shaodong. Factors affecting fall fear in the first movement of elderly patients after total knee or hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1351-1355. |
[6] | Wang Jinjun, Deng Zengfa, Liu Kang, He Zhiyong, Yu Xinping, Liang Jianji, Li Chen, Guo Zhouyang. Hemostatic effect and safety of intravenous drip of tranexamic acid combined with topical application of cocktail containing tranexamic acid in total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1356-1361. |
[7] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[8] | Huang Zexiao, Yang Mei, Lin Shiwei, He Heyu. Correlation between the level of serum n-3 polyunsaturated fatty acids and quadriceps weakness in the early stage after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1375-1380. |
[9] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[10] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[11] | Lü Zhen, Bai Jinzhu. A prospective study on the application of staged lumbar motion chain rehabilitation based on McKenzie’s technique after lumbar percutaneous transforaminal endoscopic discectomy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1398-1403. |
[12] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[13] | Du Xiupeng, Yang Zhaohui. Effect of degree of initial deformity of impacted femoral neck fractures under 65 years of age on femoral neck shortening [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1410-1416. |
[14] | Zhang Shangpu, Ju Xiaodong, Song Hengyi, Dong Zhi, Wang Chen, Sun Guodong. Arthroscopic suture bridge technique with suture anchor in the treatment of acromioclavicular dislocation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1417-1422. |
[15] | Liang Yan, Zhao Yongfei, Xu Shuai, Zhu Zhenqi, Wang Kaifeng, Liu Haiying, Mao Keya. Imaging evaluation of short-segment fixation and fusion for degenerative lumbar scoliosis assisted by highly selective nerve root block [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1423-1427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||