Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (28): 5968-5976.doi: 10.12307/2025.484
Previous Articles Next Articles
Xi Haixiang1, Duan Jie2, Xu Ping1, Fei Xi1, Li Xiaoping1, Cao Lei1, Tang Guangping1, Zhang Lei1
Received:
2024-06-18
Accepted:
2024-07-26
Online:
2025-10-08
Published:
2024-12-07
Contact:
Zhang Lei, MS, Associate chief physician, Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine (Affiliated Traditional Chinese Medicine Hospital of Hubei University of Chinese Medicine), Wuhan 430050, Hubei Province, China
About author:
Xi Haixiang, MS, Attending physician, Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine (Affiliated Traditional Chinese Medicine Hospital of Hubei University of Chinese Medicine), Wuhan 430050, Hubei Province, China
Supported by:
CLC Number:
Xi Haixiang, Duan Jie, Xu Ping, Fei Xi, Li Xiaoping, Cao Lei, Tang Guangping, Zhang Lei. Syringin-chitosan hydrogel suppresses intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(28): 5968-5976.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Western blot检测结果显示,与正常对照组比较,退变组髓核细胞BCL-2蛋白表达显著降低(P < 0.05),BAX、cleaved caspase-9、cleaved caspase-3蛋白表达显著升高(P < 0.05);与退变组比较,药物组髓核细胞BCL-2蛋白表达显著升高(P < 0.05),BAX、cleaved caspase-9、cleaved caspase-3蛋白表达显著降低(P < 0.05);与药物组比较,抑制剂组髓核细胞BCL-2蛋白表达显著降低(P < 0.05),BAX、cleaved caspase-9、cleaved caspase-3蛋白表达显著升高(P < 0.05),见图3。"
2.7 紫丁香苷-壳聚糖水凝胶对大鼠椎间盘退变的治疗作用 2.7.1 实验动物数量分析 30只大鼠无脱落,全部进入结果分析。 2.7.2 椎间盘组织形态观察结果 苏木精-伊红与番红O-固绿染色结果显示,模型对照组、模型干预组大鼠椎间盘纤维环排列紊乱,各板层间出现中断和裂隙样改变,髓核细胞数量减少且呈簇样分布,胶原纤维含量明显减少,显现明显的椎间盘退变表现;与模型对照组、模型干预组相比,水凝胶组、紫丁香苷溶液组、紫丁香苷水凝胶组大鼠椎间盘退变程度均有不同程度减轻,胶原纤维含量增加,其中紫丁香苷水凝胶组的改善程度最明显,见图8A。 2.7.3 组织学评分结果 5组大鼠椎间盘组织学评分结果见图8B。模型对照组、模型干预组组织学评分高于水凝胶组、紫丁香苷溶液组、紫丁香苷水凝胶组(P < 0.05),水凝胶组组织学评分高于紫丁香苷溶液组、紫丁香苷水凝胶组(P < 0.05),紫丁香苷溶液组组织学评分高于紫丁香苷水凝胶组(P < 0.05)。"
[1] KIRNAZ S, CAPADONA C, WONG T, et al. Fundamentals of Intervertebral Disc Degeneration. World Neurosurg. 2022;157:264-273. [2] HOFFELD K, LENZ M, EGENOLF P, et al. Patient-related risk factors and lifestyle factors for lumbar degenerative disc disease: a systematic review. Neurochirurgie. 2023;69(5):101482. [3] GOLDBERG JL, GARTON A, SINGH S, et al. Challenges in the Development of Biological Approaches for the Treatment of Degenerative Disc Disease. World Neurosurg. 2022;157:274-281. [4] ZHU J, SUN R, SUN K, et al. The deubiquitinase USP11 ameliorates intervertebral disc degeneration by regulating oxidative stress-induced ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biol. 2023;62:102707. [5] WANG W, JING X, DU T, et al. Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med. 2022;190:234-246. [6] WANG Y, CHENG H, WANG T, et al. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023;56(9):e13448. [7] ZHAO WJ, LIU X, HU M, et al. Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells via the miR-34a-5p/SIRT1 axis. World J Stem Cells. 2023;15(8):842-865. [8] WANG J, XIA D, LIN Y, et al. Oxidative stress-induced circKIF18A downregulation impairs MCM7-mediated anti-senescence in intervertebral disc degeneration. Exp Mol Med. 2022;54(3):285-297. [9] ZHU X, LIU S, CAO Z, et al. Higenamine mitigates interleukin-1beta-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem. 2021;476(11):3889-3897. [10] BAO J, QIAN Z, LIU L, et al. Pharmacological Disruption of Phosphorylated Eukaryotic Initiation Factor-2alpha/Activating Transcription Factor 4/Indian Hedgehog Protects Intervertebral Disc Degeneration via Reducing the Reactive Oxygen Species and Apoptosis of Nucleus Pulposus Cells. Front Cell Dev Biol. 2021;9:675486. [11] HUANG C, ZOU K, WANG Y, et al. Esculetin Alleviates IL-1beta-Evoked Nucleus Pulposus Cell Death, Extracellular Matrix Remodeling, and Inflammation by Activating Nrf2/HO-1/NF-kb. ACS Omega. 2023;9(1):817-827. [12] YANG X, CHEN Y, GUO J, et al. Polydopamine Nanoparticles Targeting Ferroptosis Mitigate Intervertebral Disc Degeneration Via Reactive Oxygen Species Depletion, Iron Ions Chelation, and GPX4 Ubiquitination Suppression. Adv Sci (Weinh). 2023;10(13):e2207216. [13] YU H, TENG Y, GE J, et al. Isoginkgetin-loaded reactive oxygen species scavenging nanoparticles ameliorate intervertebral disc degeneration via enhancing autophagy in nucleus pulposus cells. J Nanobiotechnology. 2023;21(1):99. [14] WANG F, YUAN C, LIU B, et al. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. J Transl Med. 2022;20(1):310. [15] SHI Z, ZOU S, SHEN Z, et al. High-throughput metabolomics using UPLC/Q-TOF-MS coupled with multivariate data analysis reveals the effect and mechanism of syringin against ovariectomized osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1183:122957. [16] SHEN Z, YANG C, ZHU P, et al. Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-kappaB signaling pathway. Biomed Pharmacother. 2020;131:110681. [17] 张云鑫,张存鑫,王倩,等.丁香苷抑制大鼠椎间盘退变[J].中国组织工程研究,2024,28(32):5104-5109. [18] LIU C, FAN L, GUAN M, et al. A Redox Homeostasis Modulatory Hydrogel with GLRX3(+) Extracellular Vesicles Attenuates Disc Degeneration by Suppressing Nucleus Pulposus Cell Senescence. ACS Nano. 2023;17(14):13441-13460. [19] CHEN J, ZHU H, ZHU Y, et al. Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration. Bioact Mater. 2021;9:29-43. [20] ZHAO J, QIU P, WANG Y, et al. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol. 2023; 244:125250. [21] GUO S, REN Y, CHANG R, et al. Injectable Self-Healing Adhesive Chitosan Hydrogel with Antioxidative, Antibacterial, and Hemostatic Activities for Rapid Hemostasis and Skin Wound Healing. ACS Appl Mater Interfaces. 2022;14(30):34455-34469. [22] ZHANG Y, LI Y, LIU C, et al. Decellularized Nucleus Pulposus Matrix/Chitosan Hybrid Hydrogels for Nucleus Pulposus Tissue Engineering. Global Spine J. 2024;14(4):1175-1183. [23] ALINEJAD Y, ADOUNGOTCHODO A, GRANT MP, et al. Injectable Chitosan Hydrogels with Enhanced Mechanical Properties for Nucleus Pulposus Regeneration. Tissue Eng Part A. 2019;25(5-6):303-313. [24] 汪平,范明宇,周少怀,等.芸香苷改善椎间盘退变大鼠髓核细胞焦亡的研究[J].中国临床药理学杂志,2024,40(7):1029-1033. [25] 梁霄,陈虹宇,彭雪琴.MTMR6激活PI3K/AKT/mTOR信号通路促进肝癌细胞侵袭[J].陆军军医大学学报,2024,46(3):249-256. [26] ZHANG GZ, LIU MQ, CHEN HW, et al. NF-kappaB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2021;54(7):e13057. [27] WU J, CHEN Y, LIAO Z, et al. Self-amplifying loop of NF-kappaB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration. Mol Ther. 2022;30(10):3241-3256. [28] CHE H, LI J, LI Y, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Elife. 2020;9:e52570. [29] GONG Y, QIU J, JIANG T, et al. Maltol ameliorates intervertebral disc degeneration through inhibiting PI3K/AKT/NF-kappaB pathway and regulating NLRP3 inflammasome-mediated pyroptosis. Inflammopharmacology. 2023;31(1):369-384. [30] ZHANG Y, HE F, CHEN Z, et al. Melatonin modulates IL-1beta-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY). 2019;11(22):10499-10512. [31] GREEN DR. The Mitochondrial Pathway of Apoptosis Part II: The BCL-2 Protein Family. Cold Spring Harb Perspect Biol. 2022;14(6):a041046. [32] MAO J, TAN L, TIAN C, et al. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY). 2023;15(21):11994-12020. [33] DE OLIVEIRA CP, RODRIGUES LM, FREGNI MV, et al. Extracellular matrix remodeling in experimental intervertebral disc degeneration. Acta Ortop Bras. 2013;21(3):144-149. [34] SIADAT SM, RUBERTI JW. Mechanochemistry of collagen. Acta Biomater. 2023;163:50-62. [35] XING H, ZHANG Z, MAO Q, et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnology. 2021;19(1):264. [36] ZHANG Y, GUO W, LIU D, et al. Tailoring abundant active-oxygen sites of Prussian blue analogues-derived adsorbents for highly efficient Yb(III) capture. J Hazard Mater. 2023;445:130457. [37] SHAO Z, LU J, ZHANG C, et al. Stachydrine ameliorates the progression of intervertebral disc degeneration via the PI3K/Akt/NF-κB signaling pathway: in vitro and in vivo studies.Food Funct. 2020;11(12):10864-10875. [38] ZHAO Y, LI A. miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging (Albany NY). 2021;13(18):22459-22473. [39] 张文捷,张勇,史明,等.淫羊藿苷调控髓核来源间充质干细胞凋亡修复椎间盘退变[J].中国组织工程研究,2023,27(24): 3803-3809. [40] 李大鹏,吴燕,岳佳伟,等.胰岛素样生长因子1通过PI3K/Akt信号通路促进髓核细胞聚集蛋白聚糖及Ⅱ型胶原的表达[J].中国组织工程研究,2017,21(8):1202-1208. |
[1] | Lai Pengyu, Liang Ran, Shen Shan. Tissue engineering technology for repairing temporomandibular joint: problems and challenges [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(在线): 1-9. |
[2] | Qian Kun, Li Ziqing, Sun Shui . Endoplasmic reticulum stress in the occurrence and development of common degenerative bone diseases [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1285-1295. |
[3] | Xiang Pan, Che Yanjun, Luo Zongping. Compressive stress induces degeneration of cartilaginous endplate cells through the SOST/Wnt/beta-catenin pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 951-957. |
[4] | Ding Zhili, Huang Jie, Jiang Qiang, Li Tusheng, Liu Jiang, Ding Yu. Constructing rabbit intervertebral disc degeneration models by different methods under X-ray guidance: a comparative study [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 995-1002. |
[5] | Wang Zilin, Mu Qiuju, Liu Hongjie, Shen Yuxue, Zhu Lili. Protective effects of platelet-rich plasma hydrogel on oxidative damage in L929 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 771-779. |
[6] | Zhao Hongxia, Sun Zhengwei, Han Yang, Wu Xuechao , Han Jing. Osteogenic properties of platelet-rich fibrin combined with gelatin methacryloyl hydrogel [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 809-817. |
[7] | Zhao Zengbo, Li Chenxi, Dou Chenlei, Ma Na, Zhou Guanjun. Anti-inflammatory and osteogenic effects of chitosan/sodium glycerophosphate/sodium alginate/leonurine hydrogel [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 678-685. |
[8] | Dong Meilin, Du Haiyu, Liu Yuan. Quercetin-loaded carboxymethyl chitosan hydrogel promotes wound healing in diabetic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 692-699. |
[9] |
Zhang Bo, Zhang Zhen, Jiang Dong.
Tannic acid modified interpenetrating network hydrogel promotes tissue remodeling of ruptured Achilles tendon after surgery#br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 721-729.
|
[10] | Ren Bo, Tang Yongliang, Li Ni, Liu Bangding. Thermosensitive antibacterial hydrogel for treatment of infected bone defects [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7269-7277. |
[11] | Yin Hang, Song Kui. Effect of crocin hydrogel on chondrocytes and MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7293-7300. |
[12] | Li Ruotong, Wu Yuening, Deng Yunyi, Chen Shichao, Lan Xiaorong, Li Shiting, Li Guangwen. Preparation and antibacterial evaluation of nanosilver-reduced graphene oxide/polydopamine/methacrylated gelatin@Gap19 hydrogel [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7333-7343. |
[13] | Zhao Jianwei, Li Xunsheng, Lyu Jinpeng, Zhou Jue, Jiang Yidi, Yue Zhigang, Sun Hongmei. Deer antler stem cell exosome composite hydrogel promotes the repair of burned skin [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7344-7352. |
[14] | Su Yongkun, Sun Hong, Liu Miao, Yang Hua, Li Qingsong. Development of novel antioxidants and antioxidant combination carried by nano-hydrogel systems in treatment of intervertebral disc degeneration [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7376-7384. |
[15] | Yan Rui, Wang Yiyu, Liu Xue, Jiang Yourong, Cheng Huanzhi, Ma Zhe. Application of exosome-loaded hydrogel in nerve injury regeneration and wound healing [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7439-7446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||