Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (10): 1554-1561.doi: 10.12307/2024.361
Previous Articles Next Articles
Lu Jie1, Jin Jie1, Yu Lichao2, Ma Shasha3, Xu Hongmei1
Received:
2023-04-04
Accepted:
2023-05-19
Online:
2024-04-08
Published:
2023-08-19
Contact:
Xu Hongmei, MD, Master’s supervisor, Chief nurse, School of Nursing, Binzhou Medical University, Yantai 264000, Shandong Province, China
About author:
Lu Jie, Master candidate, School of Nursing, Binzhou Medical University, Yantai 264000, Shandong Province, China
Supported by:
CLC Number:
Lu Jie, Jin Jie, Yu Lichao, Ma Shasha, Xu Hongmei. Screening and mechanism of the best treatment of red light and silver ion dressing for treatment of chronic non-healing wounds[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(10): 1554-1561.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.3 各组大鼠创面愈合情况 随着治疗时间的推移,4 组大鼠背部创面面积均逐渐减小,治疗后不同时间点各组大鼠创面愈合情况,见图1。治疗后第3 天,各组创面均有炎症表现,A2B1组、A2B2组创面面积小于A1B1组、A1B2组。治疗后第7 天,与A1B1组比较,A1B2组炎症消退不明显,但创面变红润;与A1B1组比较,A2B1组、A2B2组创缘红肿情况明显减轻、创面面积显著减小,A2B2组创面面积小于A2B1组。治疗后第14 天,A1B1组创缘红肿程度减少,针刺肉芽组织未见有出血;与A1B1组比较,A1B2组创缘红肿明显减轻,创面红润;与A1B1组相比较,A2B1组和A2B2组创面面积均减小;与A2B1组比较,A2B2组创面面积明显减小且基本愈合。 "
2.4 各组大鼠创面细菌培养结果 治疗后第7 天,各组大鼠创面细菌培养结果如图2所示。单因素方差分析结果表明,4 组大鼠创面细菌菌落数比较差异有显著性意义(F=18.843,P=0.000),进一步的多重比较显示,A1B1组大鼠创面细菌菌落数明显高于其他3 组(P < 0.05),A1B2与A2B1组大鼠创面细菌菌落数比较差异无显著性意义(P > 0.05),A2B2组大鼠创面细菌菌落数低于其他3 组(P < 0.05)。 2.5 各组大鼠创面组织形态学观察结果 苏木精-伊红染色显示, 治疗后第3 天,A1B1组和A1B2组创面可见大量炎症浸润,细胞水肿、间隙最大;A2B1组和A2B2组细胞间隙较小,炎症浸润小于A1B1组、A1B2组;A2B2组可见新生毛细血管及新生的成纤维细胞。治疗后第7 天,A1B1组和A1B2组细胞水肿减轻,细胞形态较小,可见新生肉芽组织;相比A1B1组,A1B2组可见成纤维细胞;A2B1组创面细胞萎缩,可见成纤维细胞及新生毛细血管;A2B2组可见梭形成纤维细胞、较多新生毛细血管及胶原纤维和网状弹力纤维。治疗后第14 天,4 组大鼠创面细胞结构基本正常,A1B1组和A1B2组细胞间隙稍宽,A1B1组胶原纤维排列混乱,A1B2组胶原纤维排列较规律,A2B1组胶原纤维平行分布,A2B2组可见大量的胶原纤维平行分布且连接紧密,如图3所示。"
2.7 各组大鼠创面组织相关基因检测结果 治疗后不同时间点各组大鼠创面组织血管内皮生长因子a、血管内皮生长因子受体2的mRNA表达倍数差异,见表7,8。治疗后第3,7,14 天,4 组大鼠创面组织血管内皮生长因子a 和血管内皮生长因受体2 mRNA表达总体呈升高趋势;治疗后相同时间点下,A1B2组大鼠创面组织血管内皮生长因子a 和血管内皮生长因受体2 mRNA表达高于A1B1组(P < 0.05),A2B1组大鼠创面组织血管内皮生长因子a 和血管内皮生长因受体2 mRNA表达高于A1B2组(P < 0.05),A2B2组大鼠创面组织血管内皮生长因子a 和血管内皮生长因受体2 mRNA表达高于A2B1组(P < 0.05),见图5。"
2.8 各组大鼠创面组织相关蛋白检测结果 Western-blotting检测显示,随着治疗后时间的推移,4 组大鼠创面组织中肿瘤坏死因子α、白细胞介素6蛋白表达下降,白细胞介素10、血管内皮生长因子a、血管内皮生长因子受体2蛋白表达升高。治疗后第3,7 天,A1B2组肿瘤坏死因子α蛋白表达低于A1B1组(P < 0.05),A2B1组肿瘤坏死因子α蛋白表达低于A1B2组(P < 0.05),A2B2组肿瘤坏死因子α蛋白表达低于A2B1组(P < 0.05);治疗后第14 天,A1B1组肿瘤坏死因子α蛋白表达高于其他3 组(P < 0.05),A2B2组肿瘤坏死因子α蛋白表达低于A2B1组、A1B2组(P < 0.05),见图6A。 治疗后第3 天,A1B1组白细胞介素6蛋白表达高于其他3 组(P < 0.05),A1B2 组、A2B1组白细胞介素6蛋白表达高于A2B2组(P < 0.05);治疗后第7,14 天,A1B1组白细胞介素6蛋白表达高于其他3 组(P < 0.05),A1B2组白细胞介素6蛋白表达高于A2B1组(P < 0.05),A2B1组白细胞介素6蛋白表达高于A2B2组(P < 0.05),见图6B。 治疗后第3,7 天,A1B1组白细胞介素10蛋白表达低于其他3 组(P < 0.05),A1B2组白细胞介素10蛋白表达低于A2B1组(P < 0.05),A2B1组白细胞介素10蛋白表达低于A2B2组(P < 0.05);治疗后第14 天,A1B1组白细胞介素10蛋白表达低于其他3 组(P < 0.05),A2B1组、A1B2组白细胞介素10蛋白表达低于A2B2组(P < 0.05),见图6C。 治疗后第3,7 天,A1B1组血管内皮生长因子a蛋白并表达低于其他3 组(P < 0.05),A2B1组血管内皮生长因子a蛋白表达高于A1B2组(P < 0.05),A2B2组血管内皮生长因子a蛋白表达均高于A2B1组(P < 0.05);治疗后第14天,A1B1组、A1B2组血管内皮生长因子a蛋白表达低于A2B1组、A2B2组 (P < 0.05),A2B1组血管内皮生长因子a蛋白表达高于A2B2组(P < 0.05),见图6D。 治疗后第3 天,A1B1组血管内皮生长因子受体2蛋白表达低于其他3 组(P < 0.05),A1B2组血管内皮生长因子受体蛋白表达低于A2B1组、A2B2组(P < 0.05);治疗后第7 天,A1B1组血管内皮生长因子受体2蛋白表达低于其他3 组(P < 0.05),A1B2组血管内皮生长因子受体2蛋白表达低于A2B1组(P < 0.05),A2B1组血管内皮生长因子受体2蛋白表达低于A2B2组(P < 0.05);治疗后第14 天,A1B1组、A1B2组血管内皮生长因子受体2蛋白表达低于A2B1组、A2B2组(P < 0.05),A2B2组血管内皮生长因子受体2蛋白表达高于A2B1组(P < 0.05),见图6E。"
[1] KIM S, KIM Y, YU SH, et al. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets. 2023;34(1):2151996. [2] NORAHAN MH, PEDROZA-GONZÁLEZ SC, SÁNCHEZ-SALAZAR MG, et al. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater. 2022;24:197-235. [3] 彭梅,曾宪容,潘福琼,等.高压氧联合湿性愈合治疗大鼠皮肤慢性难愈合溃疡的疗效研究[J].中华物理医学与康复杂志,2020,42(2):117-1193. [4] WANG P, WU J, YANG H, et al. Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing. Bioact Mater. 2023;24:463-476. [5] 周景祺,唐佳俊,管皓楠,等.银离子敷料在糖尿病合并慢性创面治疗中的应用价值[J].中华糖尿病杂志,2021,13(6):603-609. [6] 裴秋艳,王平,李志刚,等.表皮生长因子联合银离子敷料对III期,IV期压力性损伤患者血清炎性细胞因子和临床疗效的影响[J].四川医学,2022,43(1):63-66. [7] 李建波,王可,周莉,等.糖尿病足病原菌及银离子敷料干预效果[J].中华医院感染学杂志,2022, 32(22): 3419-3423. [8] 魏霜,李玉军,张凤民.LED红光在临床疾病中的研究及应用[J].激光生物学报, 2019,28(5): 405-409. [9] 赵举红,仵楠, 崔灵欣,等.低能量激光疗法联合Dycal用于大鼠磨牙直接盖髓术的体内研究[J].实用口腔医学杂志,2022,38(1):24-29. [10] 张百荣,李梦秋,范华娜,等.慢性皮肤溃疡大鼠模型的比较研究[J].中国实验动物学报, 2022,30(3):392-399. [11] 邹国发.基于层次分析法的金葡菌皮肤感染模型研究及多枝雾水葛干预作用[D].广州:广东药科大学,2018. [12] 胡金龙,全桦红,王静成,等.温敏性水凝胶Pluronic F127载硫化铜纳米颗粒修复大鼠感染性创面[J]. 中国组织工程研究,2023,27(12):1927-1931. [13] 汤灵翼.疮灵液对难愈性糖尿病性创面愈合及血管新生的影响及机理研究[D].南京:南京中医药大学,2017. [14] VASSO PG, PARISI J, PENHA TFC, et al. Association of photobiomodulation therapy (PBMT) and exercises programs in pain and functional capacity of patients with knee osteoarthritis (KOA): a systematic review of randomized trials. Lasers Med Sci. 2021;36(7):1341-1353. [15] 陈静,计平,郑奇,等.基于多波段红光LED的低能量光疗系统设计[J].传感器与微系统, 2020,39(5):65-67,70. [16] GOLOVYNSKA I, STEPANOV YV, QU JGOLOVYNSKYI S, et al. Macrophages Modulated by Red/NIR Light: Phagocytosis, Cytokines, Mitochondrial Activity, Ca2+ Influx, Membrane Depolarization and Viability. Photochem Photobiol. 2022;98(2):484-497. [17] MARTIGNAGO CCS, TIM CR, ASSIS L, et al. Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers Med Sci. 2020;35(1):157-164. [18] Theodoro V, Fujii L, Lucke LD, et al. Inhibitory effect of red LED irradiation on fibroblasts and co-culture of adipose-derived mesenchymal stem cells. Heliyon. 2020; 6(5):e03882. [19] 李明,刘甜甜,朱含汀,等.LED红光对糖尿病大鼠创面愈合的影响[J].中华损伤与修复杂志(电子版),2022,17(1):18-24. [20] YANG Y, CHEN F, XU N, et al. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials. 2022;281:121368. [21] LUO J, YANG P, CHENG J, et al. Photosensitizers with aggregation-induced far-red/near-infrared emission for versatile visualization and broad-spectrum photodynamic killing of pathogenic microbes. J Colloid Interface Sci. 2023;634:664-674. [22] 冯泽峰,王沛沛,杨旭,等.LED光疗仪在皮肤中的穿透评估[J].光学精密工程,2022, 30(10): 1139-1150. [23] DE BRITO SOUSA K, RODRIGUES MFSD, DE SOUZA SANTOS D, et al. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers. Lasers Med Sci. 2020;35(2):337-343. [24] HUANG L, YU L, YIN X, et al. Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J Colloid Interface Sci. 2022;622:117-125. [25] HERNÁNDEZ-RANGEL A, SILVA-BERMUDEZ P, ESPAÑA-SÁNCHEZ BL, et al. Fabrication and in vitro behavior of dual-function chitosan/silver nanocomposites for potential wound dressing applications-ScienceDirect. Mater Sci Eng C Mater Biol Appl. 2019;94:750-765. [26] MASOOD N, AHMED R, TARIQ M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019; 559:23-36. [27] CHEN G, ZHOU Y, DAI J, et al. Calcium alginate/PNIPAAm hydrogel with body temperature response and great biocompatibility: Application as burn wound dressing. Int J Biol Macromol. 2022;216:686-697. [28] 聂浩坤,聂远,林健,等.基于析因设计探讨金雀根及肾消通络方对糖尿病肾病大鼠肾组织CD68/iNOS和p38MAPK信号通路的影响[J].中华中医药杂志,2023,38(3): 1235-1240. [29] 周敏,徐旭英.回阳生肌膏对糖尿病足溃疡小鼠阴证创面愈合的影响[J].中华中医药杂志,2023,38(1):148-154. [30] 黄卫虎,徐燕,孙朝越,等.四黄油对糖尿病大鼠烫伤创面皮肤组织CD146,VEGF表达及肉芽组织血管密度的影响[J].中国老年学杂志,2022,42(18):4517-4522. [31] 崔鑫钰,白亚利,吴晏.麝香通心滴丸促进血管生成改善2型糖尿病大鼠心功能[J].中国中药杂志,2022,47(23):6476-6484. [32] HOLL J, KOWALEWSKI C, ZIMEK Z, et al. Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells. 2021;10(3):655. [33] VAZQUEZ-ZAPIEN GJ, MARTINEZ-CUAZITL A, GRANADOS-JIMENEZ A, et al. Skin wound healing improvement in diabetic mice through FTIR microspectroscopy after implanting pluripotent stem cells. APL Bioeng. 2023;7(1):016109. [34] CAMES SP, BULUT O, YAZAR V, et al. 3D-MSCs A151 ODN-loaded exosomes are immunomodulatory and reveal a proteomic cargo that sustains wound resolution. J Adv Res. 2022;41:113-128. [35] DA COSTA MANSO GM, ELIAS-OLIVEIRA J, GUIMARÃES JB, et al. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen Ther. 2023;22:79-89. [36] CHRISTIANSEN DL, KILLEEN AC, RAMER-TAIT A, et al. Local simvastatin and inflammation during periodontal mini-flap wound healing: Exploratory results. J Periodontol. 2023; 94(4):467-476. [37] 李姗,周志文,刘湘花,等.黄杞苷干预NF-κB信号通路抑制巨噬细胞炎症反应及氧化应激[J].中国感染控制杂志,2023,22(4):383-390. [38] 郭夏晴,杜娟娇,叶世青,等.中医药对糖尿病足溃疡相关细胞因子调控作用的研究进展[J].中国实验方剂学杂志,2023,29(3):10. [39] 韦积华,罗富强,谢康麒,等.舒洛地特对糖尿病足溃疡大鼠HIF-1α/GPER/VEGF通路及创面愈合的影响[J].中国老年学杂志,2023,43(5):1151-1155. [40] KOIDE T, MANDAI S, KITAOKA R, et al. Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease. Circ Res. 2023;132(4): 415-431. [41] ZHA W, WANG J, GUO Z, et al. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int J Pharm. 2023;632:122565. [42] MARTINEZ-FIERRO ML, GARZA-VELOZ I, CASTAÑEDA-LOPEZ ME, et al. Evaluation of the Effect of the Fibroblast Growth Factor Type 2 (FGF-2) Administration on Placental Gene Expression in a Murine Model of Preeclampsia Induced by L-NAME. Int J Mol Sci. 2022;23(17):10129. [43] ZHANG G, YI L, WANG C, et al. Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3. J Photochem Photobiol B. 2022;237:112573. |
[1] | Yang Yufang, Yang Zhishan, Duan Mianmian, Liu Yiheng, Tang Zhenglong, Wang Yu. Application and prospects of erythropoietin in bone tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1443-1449. |
[2] | Wang Yeyuan, Du Yilang, Yu Dehao, Ning Fengting, Bai Bing. Effect of micro-arc oxidation treatment on biological activity of medical metals [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 771-776. |
[3] | Wang Jiani, Chen Junyu. Angiogenesis mechanism of metal ions and their application in bone tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 804-812. |
[4] | Zhang Ya, Mu Qiuju, Wang Zilin, Liu Hongjie, Zhu Lili. Hydrogel loaded with platelet-rich plasma promotes wound healing in diabetic rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 690-696. |
[5] | Yang Yuqing, Chen Zhiyu. Role and application of early transient presence of M1 macrophages in bone tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 594-601. |
[6] | Maisituremu·Heilili, Zhang Wanxia, Nijiati·Nuermuhanmode, Maimaitituxun·Tuerdi. Effect of intraarticular injection of different concentrations of ozone on condylar histology of rats with early temporomandibular joint osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 505-509. |
[7] | Li Chengming, Xue Dongling, Yang Xinyu, Xiao Chi, Cui Daping. Mechanism of Chinese medicine for promoting blood circulation and removing blood stasis combined with platelet-rich plasma to improve steroid-induced necrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 288-294. |
[8] | Huang Huimin, Xie Bingying, Huang Jingwen, Huang Xiaobin, Xie Lihua, Li Shengqiang, Ge Jirong. Protective mechanism of alendronate granule in a rat osteoporosis model based on TMT proteomic analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(16): 2505-2511. |
[9] | Pan Chengzhen, Chen Feng, Lin Zonghan, Mo Jian, Zhang Chi, Wei Yuanxun, Wei Zongbo. Mechanism by which terpenoid herbal monomers prevent osteoporosis by regulating nuclear factor-kappaB signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(14): 2234-2241. |
[10] | Zhai Haoyan, Zhao Yuan, Fan Dengying, Liu Chunyan. The role of reactive oxygen species in periodontitis and periodontal tissue regeneration [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(14): 2254-2260. |
[11] | Mo Jian, Ye Sentao, Zhang Xiaoyun. Progress in the treatment of knee osteoarthritis with monomer and compound Chinese medicine [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(11): 1756-1761. |
[12] | Ma Suilu, He Zhijun, Liu Tao, Li Yan, He Yuanxu, He Bo, Wang Weiwei, Wei Xiaotao. Traditional Chinese medicine monomer in the prevention and treatment of flap necrosis by regulating “autophagy” [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 153-158. |
[13] | Xu Yan, Li Ping, Lai Chunhua, Zhu Peijun, Yang Shuo, Xu Shulan. Piezoelectric materials for vascularized bone regeneration [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(7): 1126-1132. |
[14] | Ke Weiqiang, Chen Xianghui, Chen Xiaoling, Meng Jie, Ma Yanlin. Rituximab combined with autologous peripheral blood stem cell transplantation in the treatment of diffuse large B-cell lymphoma and the expression of related factors [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(6): 915-920. |
[15] | Xu Zhengyi, Wan Qianbing, Chen Junyu. Natural small molecular compounds in the treatment of bone-related diseases by regulating type H blood vessels and its application in tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(34): 5546-5553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||