Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (16): 2512-2518.doi: 10.12307/2024.283
Previous Articles Next Articles
Yang Guang, Li Yanlin, Wang Guoliang, Ning Ziwen, Yang Tengyun, He Renjie, Xiong Bohan, Yang Bing, Li Li
Received:
2023-02-14
Accepted:
2023-04-12
Online:
2024-06-08
Published:
2023-07-29
Contact:
Li Yanlin, Professor, Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
About author:
Yang Guang, Master, Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
Supported by:
CLC Number:
Yang Guang, Li Yanlin, Wang Guoliang, Ning Ziwen, Yang Tengyun, He Renjie, Xiong Bohan, Yang Bing, Li Li. Mechanism of NONHSAT248596.1 endogenous competition with miR-146a-5p regulating osteoarthritis cartilage degeneration[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(16): 2512-2518.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
造模后第4 周:lncRNA组软骨面开始变薄,软骨细胞肿胀、极性消失、排列紊乱、细胞数量减少,软骨陷窝消失;miRNA组软骨面正常、规整,软骨细胞形态无明显变化,细胞排列规整且呈极性;ceRNA组软骨面正常,软骨细胞形态正常但部分排列紊乱、细胞数量无减少;对照组软骨面稍厚薄不均,软骨细胞部分排列紊乱、细胞无肿胀、细胞数量减少。 造模后第8 周:lncRNA组软骨面变薄,软骨细胞肿胀明显,近骨质部分软骨细胞基质缺失形成裂隙,出现淡染或失染;miRNA组软骨面平整细胞,软骨细胞形态正常、排列整齐呈极性;ceRNA组软骨面厚薄不均,软骨细胞轻度肿胀、排列紊乱、极性消失、细胞数量开始减少;对照组软骨面变薄,部分软骨细胞肿胀、极性消失且排列紊乱、细胞数量明显减少,近骨质部分出现裂隙。 造模后第12 周:lncRNA组软骨面明显变薄,软骨细胞肿胀严重、细胞极性消失、排列紊乱、细胞数量显著减少,近骨质部分形成巨大裂隙;miRNA组软骨面均匀平整,软骨肿胀不明显、排列整齐且呈极性、细胞数量稍减少;ceRNA组软骨面变薄,软骨细胞肿胀、排列紊乱、极性消失,软骨陷窝消失,软骨组织中间两层软骨细胞数量减少;对照组软骨面变薄,细胞肿胀明显、极性消失、排列紊乱、细胞数量明显减少,软骨陷窝消失,近骨质部分形成裂隙。 2.3 各组软骨组织番红O固绿染色结果 见图2。"
lncRNA组从造模后第4周开始逐渐出现表层糜烂和裂缝,潮线完全被破坏,软骨组织局部或全层缺失,关节面幼稚软骨细胞增生成簇,软骨细胞排列紊乱,番红染色不均或失染,随时间的延长上述情况逐渐加重。miRNA组造模后第4,8周的番红染色软骨形态正常、排列规整,潮线完整,到12周才开始出现潮线不完整和软骨细胞的减少、排列紊乱和染色不均。ceRNA组造模后第4周开始出现染色不均,8周时表层开始出现裂缝,软骨面变薄,软骨细胞排列紊乱,潮线不完整,近骨端软骨组织的局部缺失,12周时上述情况明显加重。对照组造模后第4周开始出现软骨面变薄、染色不均,8周时表层开始出现潮线破坏,软骨面裂缝,软骨细胞排列紊乱,近骨端软骨组织的局部缺失,番红染色不均,12周时上述情况明显加重。 2.4 各组兔膝关节软骨组织qRT-PCR检测结果 见图3。"
随着造模时间的延长,基质金属蛋白酶3、基质金属蛋白酶9、基质金属蛋白酶13、CXCR4、NONHSAT248596.1 的mRNA表达量在lncRNA组、ceRNA组、对照组呈逐渐升高趋势,其中lncRNA组升高最明显,而在miRNA组中呈下降趋势。在相同时间点下,lncRNA组基质金属蛋白酶3、基质金属蛋白酶9、基质金属蛋白酶13、CXCR4、NONHSAT248596.1的mRNA表达量明显高于其他3组(P < 0.05,P < 0.000 1);miRNA组造模后4,8,12周NONHSAT248596.1 的mRNA表达量均低于ceRNA组、对照组(P < 0.05,P < 0.001,P < 0.000 1),造模后8,12周基质金属蛋白酶3、基质金属蛋白酶9、基质金属蛋白酶13、CXCR4的mRNA表达量均低于ceRNA组、对照组(P < 0.05,P < 0.000 1);在相同时间点下,ceRNA组和对照组基质金属蛋白酶3、基质金属蛋白酶9、基质金属蛋白酶13、CXCR4、NONHSAT248596.1的mRNA表达量比较差异无显著性意义(P > 0.05)。 随着造模时间的延长,聚集蛋白聚糖、Ⅱ型胶原、miR-146a-5p 的mRNA表达量在lncRNA组、ceRNA组、对照组呈逐渐下降趋势,其中lncRNA组下降最明显,在miRNA组中呈升高趋势。在相同时间点下, lncRNA组聚集蛋白聚糖、Ⅱ型胶原、miR-146a-5p的mRNA表达量明显低于其他3组(P < 0.05,P < 0.000 1);miRNA组造模后第8,12周聚集蛋白聚糖、Ⅱ型胶原的mRNA表达量明显高于ceRNA组、对照组(P < 0.05,P < 0.000 1),造模后4,8,12周miR-146a-5p的mRNA表达量明显高于ceRNA组、对照组(P < 0.05,P < 0.000 1);在相同时间点下,ceRNA组和对照组聚集蛋白聚糖、Ⅱ型胶原、miR-146a-5p的mRNA表达量比较差异无显著性意义(P > 0.05)。 这些结果表明,慢病毒转染的NONHSAT248596.1及miR-146a-5p均在软骨组织中表达,且二者之间存在竞争性抑制作用。 2.5 各组兔膝关节软骨组织Western Blot检测结果 见图4-9。 miRNA组软骨组织中聚集蛋白聚糖、Ⅱ型胶原的蛋白表达水平呈对数型增长,在造模后第8-12周时进入平台期;lncRNA组、ceRNA组、对照组软骨组织中聚集蛋白聚糖、Ⅱ型胶原的蛋白表达水平呈缓慢下降趋势。在相同时间点下,lncRNA组软骨组织中软骨组织内聚集蛋白聚糖、Ⅱ型胶原的蛋白表达水平明显低于其他3组(P < 0.05,P < 0.01);造模后第8,12周,miRNA组软骨组织中聚集蛋白聚糖、Ⅱ型胶原的蛋白表达水平明显高于ceRNA组、对照组(P < 0.05,P < 0.01)。"
[1] MAQBOOL M, FEKADU G, JIANG X, et al. An up to date on clinical prospects and management of osteoarthritis. Ann Med Surg (Lond). 2021;72:103077. [2] MAN GS, MOLOGHIANU G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37-41. [3] CHEN Y, YU Y, WEN Y, et al. A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration. Bone Res. 2022;10(1):38. [4] GAO Y, LIU S, HUANG J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int. 2014;2014:648459. [5] XU J, YAN L, YAN B, et al. Osteoarthritis Pain Model Induced by Intra-Articular Injection of Mono-Iodoacetate in Rats. J Vis Exp. 2020;(159).doi: 10.3791/60649. [6] YANG P, TAN J, YUAN Z, et al. Expression profile of cytokines and chemokines in osteoarthritis patients: Proinflammatory roles for CXCL8 and CXCL11 to chondrocytes. Int Immunopharmacol. 2016;40:16-23. [7] WATANABE K, PENFOLD ME, MATSUDA A, et al. Pathogenic role of CXCR7 in rheumatoid arthritis. Arthritis Rheum. 2010;62(11):3211-3220. [8] WANG G, LI Y, MENG X, et al. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res. 2020;15(1):195. [9] XIANG Y, LI Y, YANG L, et al. miR-142-5p as a CXCR4-Targeted MicroRNA Attenuates SDF-1-Induced Chondrocyte Apoptosis and Cartilage Degradation via Inactivating MAPK Signaling Pathway. Biochem Res Int. 2020;2020:4508108. [10] LI C, HE Y, LI Y, et al. A novel method to establish the rabbit model of knee osteoarthritis: intra-articular injection of SDF-1 induces OA. BMC Musculoskelet Disord. 2021;22(1):329. [11] 王国梁,李彦林,向耀宇,等.基质细胞衍生因子1诱导骨关节炎软骨细胞的miRNA表达谱分析[J].中国组织工程研究,2020,24(31):4948-4953. [12] ZHANG X, WANG C, ZHAO J, et al. miR-146a facilitates osteoarthritis by regulating cartilage homeostasis via targeting Camk2d and Ppp3r2. Cell Death Dis. 2017;8(4):e2734. [13] YAMASAKI K, NAKASA T, MIYAKI S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60(4):1035-1041. [14] JIA D, LI Y, HAN R, et al. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF‑1‑induced cartilage degradation. Mol Med Rep. 2019; 19(5):4388-4400. [15] WU X, BIAN B, LIN Z, et al. Identification of exosomal mRNA, lncRNA and circRNA signatures in an osteoarthritis synovial fluid-exosomal study. Exp Cell Res. 2022;410(1):112881. [16] 李晓林,李彦林,马珂,等.SDF-1/CXCR4信号通路在骨性关节炎病理进程中的作用[J].中国组织工程研究与临床康复,2011,15(15):2805-2808. [17] HE X, GAO K, LU S, et al. LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis. BMC Musculoskelet Disord. 2021;22(1):67. [18] SKRZYPA M, SZALA D, GABLO N, et al. miRNA-146a-5p is upregulated in serum and cartilage samples of patients with osteoarthritis. Pol Przegl Chir. 2019;91(3):1-5. [19] SI HB, ZENG Y, LIU SY, et al. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage. 2017;25(10):1698-1707. [20] REN T, WEI P, SONG Q, et al. MiR-140-3p Ameliorates the Progression of Osteoarthritis via Targeting CXCR4. Biol Pharm Bull. 2020;43(5):810-816. [21] SHAO J, DING Z, PENG J, et al. MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm Res. 2020;69(6):619-630. [22] ZHAO G, GU W. Effects of miR-146a-5p on chondrocyte interleukin-1β-induced inflammation and apoptosis involving thioredoxin interacting protein regulation. J Int Med Res. 2020;48(11):300060520969550. [23] QIN H, WANG C, HE Y, et al. Silencing miR-146a-5p Protects against Injury-Induced Osteoarthritis in Mice. Biomolecules. 2023;13(1):123. [24] ZHANG G, ZHANG Q, ZHU J, et al. LncRNA ARFRP1 knockdown inhibits LPS-induced the injury of chondrocytes by regulation of NF-κB pathway through modulating miR-15a-5p/TLR4 axis. Life Sci. 2020;261:118429. [25] JATHAR S, KUMAR V, SRIVASTAVA J, et al. Technological Developments in lncRNA Biology. Adv Exp Med Biol. 2017;1008:283-323. [26] HU J, WANG Z, SHAN Y, et al. Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 2018;9(7):711. [27] KONG H, SUN ML, ZHANG XA, et al. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol. 2021;9:774370. [28] ZHU Y, LI R, WEN LM. Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine. 2021;137:155352. [29] ZHANG H, SONG B, PAN Z. Downregulation of microRNA-9 increases matrix metalloproteinase-13 expression levels and facilitates osteoarthritis onset. Mol Med Rep. 2018;17(3):3708-3714. [30] ZHAN S, WANG K, SONG Y, et al. Long non-coding RNA HOTAIR modulates intervertebral disc degenerative changes via Wnt/β-catenin pathway. Arthritis Res Ther. 2019;21(1):201. [31] LI D, WANG X, YI T, et al. LncRNA MINCR attenuates osteoarthritis progression via sponging miR-146a-5p to promote BMPR2 expression. Cell Cycle. 2022;21(22):2417-2432. [32] HUANG Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med. 2018;22(12):5768-5775. [33] SUN H, PENG G, NING X, et al. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis. Am J Transl Res. 2019;11(1):16-30. |
[1] | Li Yongjie, Fu Shenyu, Xia Yuan, Zhang Dakuan, Liu Hongju. Correlation of knee extensor muscle strength and spatiotemporal gait parameters with peak knee flexion/adduction moment in female patients with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1354-1358. |
[2] | Qi Haodong, Lu Chao, Xu Hanbo, Wang Mengfei, Hao Yangquan. Effect of diabetes mellitus on perioperative blood loss and pain after primary total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1383-1387. |
[3] | Du Changling, Shi Hui, Zhang Shoutao, Meng Tao, Liu Dong, Li Jian, Cao Heng, Xu Chuang. Efficacy and safety of different applications of tranexamic acid in high tibial osteotomy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1409-1413. |
[4] | Huang Xiarong, Hu Lizhi, Sun Guanghua, Peng Xinke, Liao Ying, Liao Yuan, Liu Jing, Yin Linwei, Zhong Peirui, Peng Ting, Zhou Jun, Qu Mengjian. Effect of electroacupuncture on the expression of P53 and P21 in articular cartilage and subchondral bone of aged rats with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1174-1179. |
[5] | Zhao Garida, Ren Yizhong, Han Changxu, Kong Lingyue, Jia Yanbo. Mechanism of Mongolian Medicine Erden-uril on osteoarthritis in rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1193-1199. |
[6] | Li Rui, Zhang Guihong, Wang Tao, Fan Ping. Effect of ginseng polysaccharide on the expression of prostaglandin E2/6-keto-prostaglandin 1alpha in traumatic osteoarthritis model rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1235-1240. |
[7] | Zhang Kefan, Shi Hui. Research status and application prospect of cytokine therapy for osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 961-967. |
[8] | Zhang Zeyi, Yang Yimin, Li Wenyan, Zhang Meizhen. Effect of foot progression angle on lower extremity kinetics of knee osteoarthritis patients of different ages: a systematic review and meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 968-975. |
[9] | Shen Feiyan, Yao Jixiang, Su Shanshan, Zhao Zhongmin, Tang Weidong. Knockdown of circRNA WD repeat containing protein 1 inhibits proliferation and induces apoptosis of chondrocytes in knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 499-504. |
[10] | Maisituremu·Heilili, Zhang Wanxia, Nijiati·Nuermuhanmode, Maimaitituxun·Tuerdi. Effect of intraarticular injection of different concentrations of ozone on condylar histology of rats with early temporomandibular joint osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 505-509. |
[11] | Qiao Hujun, Wang Guoxiang. Evaluation of rat osteoarthritis chondrocyte models induced by interleukin-1beta [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 516-521. |
[12] | Liu Yuhan, Fan Yujiang, Wang Qiguang. Comparison of protocols for constructing animal models of early traumatic knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 542-549. |
[13] | Zhang Yaru, Chen Yanjun, Zhang Xiaodong, Chen Shenghua, Huang Wenhua. Effect of ferroptosis mediated by glutathione peroxidase 4 in the occurrence and progression of synovitis in knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 550-555. |
[14] | Liu Luxing, Di Mingyuan, Yang Qiang. Signaling pathways in the mechanism underlying active ingredients of Chinese medicine in the treatment of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 609-614. |
[15] | Yan Binghan, Li Zhichao, Su Hui, Xue Haipeng, Xu Zhanwang, Tan Guoqing. Mechanisms of traditional Chinese medicine monomers in the treatment of osteoarthritis by targeting autophagy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 627-632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||