Chinese Journal of Tissue Engineering Research ›› 2023, Vol. 27 ›› Issue (2): 184-191.doi: 10.12307/2022.923
Previous Articles Next Articles
Luo Di1, 2, Liang Xuezhen1, 2, Yan Bozhao2, Li Jiacheng1, Xu Bo1, 2, Li Gang1, 2
Received:
2021-07-22
Accepted:
2021-09-11
Online:
2023-01-18
Published:
2022-06-18
Contact:
Li Gang, MD, Professor, Chief physician, Doctoral supervisor, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
About author:
Luo Di, MD, Attending physician, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
Supported by:
CLC Number:
Luo Di, Liang Xuezhen, Yan Bozhao, Li Jiacheng, Xu Bo, Li Gang. Mechanism of Bushen Huoxue Capsule in repair of bone defects due to steroid-induced osteonecrosis of the femoral head in rats[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(2): 184-191.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 实验动物数量分析 实验选用大鼠60只,分为5组,研究中所有大鼠均无意外死亡或致残,且均未使用抗生素,全部进入结果分析。 2.2 大鼠一般情况 研究初始,各组大鼠在体质量、毛色、健康状态等基本方面情况无差异,但随着时间的推移,各组逐渐出现了一定差异:对照组大鼠身体状态良好,饮食、活动正常,体毛光泽、体质量随时间推移逐渐增加;多数模型组大鼠在注射甲泼尼龙琥珀酸钠后精神状态较差,主动活动减少,食欲降低,毛色光泽度下降并有不同程度的掉毛现象,体质量有所下降,体质量随时间推移呈波浪样波动增加。当4周后结束甲泼尼龙琥珀酸钠注射后,大鼠体质量则稳步增加,精神、活动、食欲、毛色均逐渐改善;而在补肾活血胶囊低、中、高剂量组中部分大鼠精神状态可,食欲、运动与毛色状态均尚可,值得注意的是每当灌胃后食欲下降明显,体质量变化趋势与模型组类似。 由图1中可发现,从4 d开始,对照组大鼠体质量明显高于其他4组,在8,11,15,18,22,25,29,36,43,50及56 d均与其他4组差异有显著性意义(P < 0.05);在29,36 d,补肾活血胶囊低剂量组大鼠体质量明显高于模型组(P < 0.05),在36 d,补肾活血胶囊中剂量组显著高于模型组(P < 0.05),此外模型组与补肾活血胶囊低、中、高剂量组体质量比差异均无显著性意义。 "
通过分析染色结果发现,对照组骨小梁面积比率显著高于模型组(P < 0.05),补肾活血胶囊3组数据则均显著高于模型组(P < 0.05);另一方面,大鼠空骨陷窝率情况与骨小梁面积比率变化趋势相反, 对照组空骨陷窝率显著低于模型组(P < 0.05)且补肾活血胶囊3组均显著低于模型组(P < 0.05)。以上结果证明甲泼尼龙琥珀酸钠对大鼠股骨头造成了显著的骨量流失,对骨小梁形态与骨细胞数量产生了显著的负面影响;同时,补肾活血胶囊对甲泼尼龙琥珀酸钠诱导造成的股骨头坏死大鼠具有一定的抑制骨量丢失,促进骨修复的作用。 2.4.2 免疫组化学分析 各组结果差异明显:与对照组相比,甲泼尼龙琥珀酸钠造成了模型组大鼠股骨头成骨相关指标碱性磷酸酶、核心结合因子α1、Ⅰ型胶原蛋白、骨桥蛋白不同程度的表达减少(P < 0.05);而灌胃不同剂量补肾活血胶囊的3个组则显著高于模型组(P < 0.05),证明补肾活血胶囊对甲泼尼龙琥珀酸钠造成的成骨相关指标下降都有不同程度的回调作用。研究结果显示,补肾活血胶囊可以在一定程度上对由甲泼尼龙琥珀酸钠造成的大鼠股骨头骨量丢失与破坏产生保护与修复作用,见图4。 "
2.5.3 骨组织中Hedgehog信号通路相关指标mRNA表达情况 对照组音猬因子、核转录因子1和核转录因子2的mRNA表达均显著高于模型组(P < 0.05);补肾活血胶囊低剂量组中核转录因子1和核转录因子2的表达显著高于模型组(P < 0.05);补肾活血胶囊中、高剂量组中的音猬因子、核转录因子1和核转录因子2表达水平与模型组相比均有显著提升(P < 0.05),见图7。故在mRNA层面,不同剂量补肾活血胶囊均可以不同程度纠正由甲泼尼龙琥珀酸钠导致的股骨头内Hedgehog信号通路相关指标表达下降的情况,因此可初步证实:在甲泼尼龙琥珀酸钠诱导下,Hedgehog信号通路与成骨指标之间存在一定相关性,而补肾活血胶囊或可通过激活Hedgehog信号通路以达到修复由甲泼尼龙琥珀酸钠造成的骨组织的破坏,进而发挥治疗激素性股骨头坏死的作用。"
2.6 Western blot分析 2.6.1 骨组织中成骨相关指标蛋白表达情况 对照组样本中成骨相关碱性磷酸酶、核心结合因子α1、Ⅰ型胶原蛋白、骨桥蛋白表达均显著高于模型组,补肾活血胶囊低剂量组中核心结合因子α1、Ⅰ型胶原蛋白、骨桥蛋白3种蛋白表达均显著高于模型组(P < 0.05);中剂量组中碱性磷酸酶、Ⅰ型胶原蛋白、骨桥蛋白3种蛋白表达均显著高于模型组(P < 0.05);高剂量组中碱性磷酸酶与Ⅰ型胶原蛋白显著高于模型组(P < 0.05),见图8。由此可见Western blot结果与上述qPCR基本一致,初步证实补肾活血胶囊可在蛋白质层面调控由甲泼尼龙琥珀酸钠诱导的股骨头坏死大鼠股骨头样本内成骨相关蛋白的表达,以达到恢复骨量、促进骨修复的目的。"
对照组样本中Hedgehog信号通路相关音猬因子、核转录因子1和核转录因子2蛋白3种蛋白表达均显著高于模型组,经过补肾活血胶囊干预的低剂量组中仅有核转录因子2蛋白表达显著高于模型组(P < 0.05);而中剂量组和高剂量组音猬因子、核转录因子1与核转录因子2蛋白的表达均著高于模型组(P < 0.05)。由此可见Western blot结果与上述qPCR的结果基本一致,即甲泼尼龙琥珀酸钠可降低大鼠股骨头样本中Hedgehog信号通路相关的音猬因子、核转录因子1和核转录因子2蛋白表达水平,补肾活血胶囊可在一定程度上提升相关蛋白表达量,初步证实二者存在一定相关性,推测补肾活血胶囊或是通过激活Hedgehog信号通路,进而发挥调控成骨的生物学进程,最终达到改善甲泼尼龙琥珀酸钠造成的大鼠股骨头中骨量丢失与骨结构破坏的不利情况,从而达到防治糖皮质激素造成的股骨头坏死的作用。 "
[1] JIN T, ZHANG Y, SUN Y, et al. IL-4 gene polymorphisms and their relation to steroid-induced osteonecrosis of the femoral head in Chinese population. Mol Genet Genomic Med. 2019;7(3):e563. [2] ZHAO DW, YU M, HU K, et al. Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey. Chin Med J (Engl). 2015;128(21):2843-2850. [3] 李盛华, 邓昶, 周明旺, 等. 中医药防治股骨头坏死临床应用现状[J]. 中国中医药信息杂志,2018,25(6):137-140. [4] 梁学振. 补肾活血胶囊通过Hedgehog信号通路调控BMSCs成骨-成脂分化治疗激素性股骨头坏死的机制研究[D]. 济南:山东中医药大学,2019. [5] 梁学振, 骆帝, 许波, 等. 补肾活血胶囊治疗股骨头坏死的分子机制研究[J]. 中华中医药杂志,2019,34(5):2188-2193. [6] CLARK JD, GEBHART GF, GONDER JC, et al. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38(1):41-48. [7] KILKENNY C, BROWNE WJ, CUTHILL IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage. 2012;20(4):256-260. [8] 董玉雷, 周磊, 李玉龙, 等.大鼠激素性股骨头坏死模型的建立和评价[J]. 中国医学科学院学报,2015,37(2):152-156. [9] 陈雁飞, 吴吉荣. 糖皮质激素致股骨头坏死的病理生理机制研究进展[J]. 解放军药学学报,2017,33(6):566-569. [10] 张琳, 汪轩, 张成龙, 等. 激素性股骨头坏死大鼠模型内毒素剂量的优选[J]. 中成药,2016,38(11):2462-2465. [11] XU J, GONG H, LU S, et al. Animal models of steroid-induced osteonecrosis of the femoral head-a comprehensive research review up to 2018. Int Orthop. 2018; 42(7):1729-1737. [12] ZHAO JJ, WU ZF, WANG L, et al. MicroRNA-145 Mediates Steroid-Induced Necrosis of the Femoral Head by Targeting the OPG/RANK/RANKL Signaling Pathway. PLoS One. 2016;11(7):e159805. [13] DONG YL, ZHOU L, LI YL, et al. Establishment and assessment of rat models of glucocorticoid-induced osteonecrosis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2015;37(2):152-156. [14] YUN SI, YOON HY, JEONG SY, et al. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab. 2009;27(2):140-148. [15] 卢非凡, 张启栋, 王卫国, 等. 激素性股骨头坏死信号通路的研究进展[J]. 中国矫形外科杂志, 2018,26(11):1017-1021. [16] POWELL C, CHANG C, NAGUWA SM, et al. Steroid induced osteonecrosis: An analysis of steroid dosing risk. Autoimmun Rev. 2010;9(11):721-743. [17] NAIR AB, JACOB S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. [18] JIAO F, TANG W, HUANG H, et al. Icariin Promotes the Migration of BMSCs In Vitro and In Vivo via the MAPK Signaling Pathway. Stem Cells Int. 2018;2018:2562105. [19] 李红明, 高原, 胡小雄. 淫羊藿苷促进骨膜细胞增殖及其机制[J]. 中国组织工程研究,2018,22(4):505-509. [20] 王娟娟, 秦雪梅, 高晓霞, 等. 杜仲化学成分、药理活性和质量控制现状研究进展[J]. 中草药,2017,48(15):3228-3237. [21] 李锟, 郝志友, 张翠利, 等. 杜仲化学成分研究[J]. 中药材, 2016,39(9):2016-2018. [22] 李三华, 陈全利, 杨加强. 杜仲总黄酮对去卵巢大鼠骨组织代谢的影响[J]. 中国老年学杂志,2018,38(13):3198-3200. [23] 李杨, 张延辉, 王云枫, 等. 丹参提取物促进骨髓间充质干细胞增殖及成骨分化的研究[J]. 中国骨质疏松杂志,2017,23(8):1030-1033. [24] 雒志恒, 祁珊珊, 吴婕, 等. 丹参酮Ⅱ_A联合维生素D_3对维甲酸诱导骨质疏松大鼠骨组织的影响[J]. 中药材,2017,40(6):1457-1460. [25] 张丽媛, 陈璐, 李春晓, 等. 川芎嗪通过抑制ERK5/P70S6K/Rac1信号通路发挥抗血小板活化及血栓形成作用[J]. 中华中医药学刊,2021,39(2):135-139. [26] 姜宇懋, 王丹巧. 川芎嗪药理作用研究进展[J]. 中国现代中药, 2016,18(10): 1364-1370. [27] 鲍悦, 高久堂, 孙佳明, 等. 中药鹿角胶的研究进展[J]. 吉林中医药,2016, 36(2):173-175. [28] 叶先文, 夏澜婷, 任洪民, 等. 白芍炮制的历史沿革及化学成分、药理作用研究进展[J]. 中草药,2020,51(7):1951-1969. [29] 徐硕, 姜文清, 邝咏梅, 等. 茯苓的化学成分及生物活性研究进展[J]. 西北药学杂志,2016,31(3):327-330. [30] 潘少斌, 孔娜, 李静, 等.香附化学成分及药理作用研究进展[J]. 中国现代中药,2019,21(10):1429-1434. [31] 张燕丽, 孟凡佳, 田园, 等. 炙甘草的化学成分与药理作用研究进展[J]. 化学工程师,2019,33(8):60-63. [32] YAO E, CHUANG PT. Hedgehog signaling: From basic research to clinical applications. J Formos Med Assoc. 2015;114(7):569-576. [33] 迟博婧, 刘光源, 邢磊, 等. Hedgehog信号通路调控骨形成及BMSCs成骨分化的研究进展[J]. 中国修复重建外科杂志,2016,30(12):1545-1550. [34] TAKEBE H, SHALEHIN N, HOSOYA A, et al. Sonic Hedgehog Regulates Bone Fracture Healing. Int J Mol Sci. 2020;21(2):677. [35] SHI Y, CHEN J, KARNER CM, et al. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112(15):4678-4683. [36] CAI JQ, HUANG YZ, CHEN XH, et al. Sonic hedgehog enhances the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Biol Int. 2012;36(4):349-355. [37] 张玲莉, 杜玉香, 叶长林. Hedgehog信号通路对骨髓间充质干细胞的调控作用[J]. 中华骨质疏松和骨矿盐疾病杂志,2020,13(6):556-562. [38] SHI Y, CHEN J, KARNER CM, et al. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015,112(15):4678-4683. |
[1] | Zhang Lichen, Chen Liang, Gu Yong. Inorganic ion bionic periosteum regulates immune microenvironment to promote bone repair [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 346-353. |
[2] | Zhang Jie, Tian Ai. Advances in the signaling pathway of M2 macrophages involved in bone regeneration [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(2): 314-321. |
[3] | Wei Tengfei, He Xiaoming, Wei Yurou, Zhan Zhiwei, He Mincong, He Wei, Wei Qiushi. Differential expression of Piezo1 in osseous tissue of steroid- and alcohol-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(2): 270-275. |
[4] | Li Huo, Wang Peng, Gao Jianming, Jiang Haoran, Lu Xiaobo, Peng Jiang. Relationship between revascularization and internal microstructure changes in osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1323-1328. |
[5] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[6] | Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026. |
[7] | Li Jiajun, Xia Tian, Liu Jiamin, Chen Feng, Chen Haote, Zhuo Yinghong, Wu Weifeng. Molecular mechanism by which icariin regulates osteogenic signaling pathways in the treatment of steroid-induced avascular necrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(5): 780-785. |
[8] | Lyu Zichen, Tu Zhenxing, Xu Ao, Cheng Kang, Wang Hongtao, Wang Bin. Mechanism of bone healing and angiogenesis during distraction osteogenesis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(36): 5881-5888. |
[9] | Lin Zhiyu, Han Jie, Ren Guowu, Chai Yuan, Wen Shuaibo, Wu Yukun, Xie Xiaozhong, Jin Wanqing. Active components of flemingia in regulating the signaling pathways related to knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(36): 5889-5896. |
[10] | Zhang Shengmin, Cao Changhong, Wang Ningning, Wang Jing, Li Zhangyi. Desferrioxamine-loaded polylactic-co-glycolic acid/hydroxyapatite composite scaffold: vascularization and osteogenesis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(34): 5413-5418. |
[11] | Long Zhisheng, Xiong Long, Gong Feipeng, Li Jingtang, Zeng Jianhua, Deng Ying, Lan Min, Kong Weihao, Chen Gang. Effect of artificial bone with multi-scale hydroxyapatite/chitosan microtubule structure on rabbit bone defect repair and angiogenesis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(34): 5436-5441. |
[12] | Cao Fei, Hui Min, Dong Xiling, Wang Le, Wang Zuxu, Zhang Min, Zhang Xiaoming, Liu Tongbin. Preparation of silver-loaded nanohydroxyapatite/polycaprolactone composite nanofiber scaffold and its osteogenic and antibacterial properties [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(34): 5461-5467. |
[13] | Pan Zhaofeng, Yang Junzheng, He Qi, Zhang Gangyu, Xiao Jiacong, Chen Baihao, Wang Haibin, Chen Peng. Effect of endothelial Piezo1 knockout on steroid-induced osteonecrosis of the femoral head in mice [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(32): 5107-5111. |
[14] | Liu Jie, Hua Qikai, Li Shanlang, Yu Jie, Su Hongjie, Ding Yi, Zhao Yongxin, Su Yongfeng, Chen Yan. Periosteum distraction for the treatment of diabetic foot ulcer: theoretical basis and clinical verification [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(32): 5236-5241. |
[15] | Wu Chengcong, Wang Fang, Wan Jianshan, Wu Zheng, Sun Rong, Huang Hefei, Qian Xuankun, Ou Hua, Ren Jing. Adenovirus-mediated bone morphogenetic protein 2 induces osteogenic differentiation of rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(30): 4757-4761. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||