[1] COHEN-ROSENBLUM A, CUI Q. Osteonecrosis of the Femoral Head. Orthop Clin North Am. 2019;50(2):139-149.
[2] KONARSKI W, POBOŻY T, ŚLIWCZYŃSKI A, et al. Avascular Necrosis of Femoral Head-Overview and Current State of the Art. Int J Environ Res Public Health. 2022;19(12):7348.
[3] NALIKASHVILI A, ENOKYAN V, LYSAK A, et al. Aseptic necrosis of the femoral head: what do we know about treatment options? Georgian Med News. 2024;(350):23-24.
[4] 柴威涛,郭成龙,张晓刚,等.股骨头坏死的中西医研究进展[J].中医研究, 2023,36(12):92-96.
[5] 张兆坤,赵俊杰,王玺玉,等.股骨头坏死中骨微血管内皮细胞对氧化应激性损伤的修复机制[J].中华骨与关节外科杂志,2024, 17(10):950-956.
[6] 陈凯佳,刘景云,曹宁,等.组织工程技术在股骨头坏死治疗中的应用及前景[J].中国组织工程研究,2024,28(9):1450-1456.
[7] SINGH M, SINGH B, SHARMA K, et al. A Molecular Troika of Angiogenesis, Coagulopathy and Endothelial Dysfunction in the Pathology of Avascular Necrosis of Femoral Head: A Comprehensive Review. Cells. 2023;12(18):2278.
[8] 祁桐.新型仿生组织工程神经修复大鼠周围神经缺损实验研究[D].长春:吉林大学,2023.
[9] SIMUNOVIC F, FINKENZELLER G. Vascularization Strategies in Bone Tissue Engineering. Cells. 2021;10(7):1749.
[10] 蒋星海.NT-3基因转染的大鼠骨髓干细胞在树枝状两亲性肽凝胶中培养向神经元分化的研究[D].南昌:南昌大学,2018.
[11] 宋玉林,郑启新,吴凯,等.含IKVAV两亲性肽自组装凝胶二维诱导神经干细胞的分化[J].中国组织工程研究与临床康复,2009, 13(34):6667-6670.
[12] 何伟.股骨头坏死的诊断与保髋治疗[J].中医正骨,2024,36(9): 12-14+18.
[13] MA T, WANG Y, MA J, et al. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review. J Orthop Surg Res. 2024;19(1):265.
[14] GONCHAROV EN, KOVAL OA, NIKOLAEVICH BEZUGLOV E, et al. Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Med Sci (Basel). 2024;12(3):32.
[15] ZHENG LW, LAN CN, KONG Y, et al. Exosomal miR-150 derived from BMSCs inhibits TNF-α-mediated osteoblast apoptosis in osteonecrosis of the femoral head by GREM1/NF-κB signaling. Regen Med. 2022; 17(10):739-753.
[16] MURAB S, HAWK T, SNYDER A, et al. Tissue Engineering Strategies for Treating Avascular Necrosis of the Femoral Head. Bioengineering (Basel). 2021;8(12):200.
[17] MA J, SUN Y, ZHOU H, et al. Animal Models of Femur Head Necrosis for Tissue Engineering and Biomaterials Research. Tissue Eng Part C Methods. 2022;28(5):214-227.
[18] LOU P, DENG X, HOU D. The effects of nano-hydroxyapatite/polyamide 66 scaffold on dog femoral head osteonecrosis model: a preclinical study. Biomed Mater. 2023;18(2): 025011.
[19] WANG X, HU L, WEI B, et al. Regenerative therapies for femoral head necrosis in the past two decades: a systematic review and network meta-analysis. Stem Cell Res Ther. 2024;15(1):21.
[20] LI M, CHEN D, MA Y, et al. Stem cell therapy combined with core decompression versus core decompression alone in the treatment of avascular necrosis of the femoral head: a systematic review and meta-analysis. J Orthop Surg Res. 2023;18(1):560.
[21] ULUSOY İ, YILMAZ M, KIVRAK A. Efficacy of autologous stem cell therapy in femoral head avascular necrosis: a comparative study. J Orthop Surg Res. 2023; 18(1):799.
[22] 齐泽强,郭庭煜,吴治念,等.骨髓间充质干细胞治疗肝衰竭的作用机制[J].基础医学与临床,2024,44(11):1608-1612.
[23] ZHENG GS, QIU X, WANG BJ, et al. Relationship Between Blood Flow and Collapse of Nontraumatic Osteonecrosis of the Femoral Head. J Bone Joint Surg Am. 2022;104(Suppl 2):13-18.
[24] SHU P, SUN DL, SHU ZX, et al. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum Gene Ther. 2020;31(5-6):286-296.
[25] CHEN H, TANG S, LIAO J, et al. VEGF165 gene-modified human umbilical cord blood mesenchymal stem cells protect against acute liver failure in rats. J Gene Med. 2021;23(10):e3369.
[26] 季庆辉,乔建民,薛宇,等.BMSCs与VEGF结合藻酸钙支架治疗兔早期股骨头坏死的疗效[J].中国老年学杂志,2019,39(3):657-659.
[27] RUIZ DE ALMODOVAR C, FABRE PJ, KNEVELS E, et al. VEGF Mediates Commissural Axon Chemoattraction through Its Receptor Flk1. Neuron. 2023;111(8):1348.
[28] 肖雪,张宁馨,宋坪.干细胞在皮肤再生中的作用及其信号通路[J].皮肤科学通报,2024,41(5):556-561.
[29] YANG C, YANG S, DU J, et al. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit. Chin Med J (Engl). 2003;116(10):1544-1548.
[30] 蒋星海,赵彪,吴凯,等.血管内皮生长因子165、神经营养因子3、血管生成素1基因转染诱导骨髓间充质干细胞向神经元及血管内皮细胞分化[J].中国组织工程研究,2018,22(25):3956-3962.
[31] ÁLVAREZ Z, KOLBERG-EDELBROCK AN, SASSELLI IR, et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science. 2021;374(6569):848-856.
[32] CĂTA A, IENAȘCU IMC, ŞTEFĂNUȚ MN, et al. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics. 2023;15(2):589.
[33] 陈睿,宋玉林,汪文玉,等.大鼠骨髓间充质干细胞与树枝状两亲性多肽自组装凝胶支架的生物相容性[J].西安交通大学学报(医学版),2016,37(6):803-809.
[34] WANG Y, SU H, WANG Y, et al. Discovery of Y-Shaped Supramolecular Polymers in a Self-Assembling Peptide Amphiphile System. ACS Macro Lett. 2022;11(12):1355-1361.
[35] JIANG T, LI S, XU B, et al. IKVAV peptide-containing hydrogel decreases fibrous scar after spinal cord injury by inhibiting fibroblast migration and activation. Behav Brain Res. 2023;455:114683.
[36] GONZÁLEZ-PÉREZ F, ALONSO M, GONZÁLEZ DE TORRE I, et al. Protease-Sensitive, VEGF-Mimetic Peptide, and IKVAV Laminin-Derived Peptide Sequences within Elastin-Like Recombinamer Scaffolds Provide Spatiotemporally Synchronized Guidance of Angiogenesis and Neurogenesis. Adv Healthc Mater. 2022;11(22):e2201646.
[37] YIN Y, WANG W, SHAO Q, et al. Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment. Biomater Sci. 2021;9(8): 2887-2892.
[38] KUMAR VB, TIWARI OS, FINKELSTEIN-ZUTA G, et al. Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering. Pharmaceutics. 2023;15(2):345.
[39] SHIN YC, KIM J, KIM SE, et al. RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Regen Biomater. 2017;4(3):159-166.
[40] 梁菊,来丹玉,吴文澜,等.三条两亲性多肽的自组装行为及酸敏特性[J].物理化学学报,2015,31(4):722-728.
[41] ADACHI T, MIYAMOTO N, IMAMURA H, et al. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int J Mol Sci. 2022;23(15):8099.
[42] 冷一,李祖浩,任广凯,等.生物活性支架在骨组织工程中的应用及进展[J].中国组织工程研究,2019,23(6):963-970.
[43] SON Y, HUANG H, ZHENG Q, et al. The cytocompatibility of self-assembly hydrogel from the neotype of amphiphilic peptide with neural stem cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009;26(4):807-810.
[44] BAIRAGI D, BISWAS P, BASU K, et al. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS Appl Bio Mater. 2019;2(12): 5235-5244. |