中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (2): 362-374.doi: 10.12307/2025.497

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

姜黄素提取及姜黄素纳米粒的制备及优化

王宇航1,张  涵1,张超晶1,寇绪容1,井桐桐1,林日梅1,刘鑫宇1,娄石磊2,阎  慧2,孙  聪2   

  1. 长春中医药大学,1药学院,2临床医学院,吉林省长春市   130117
  • 收稿日期:2024-07-06 接受日期:2024-09-05 出版日期:2026-01-18 发布日期:2025-06-17
  • 通讯作者: 孙聪,博士,教授,硕士生导师,长春中医药大学临床医学院,吉林省长春市 130117
  • 作者简介:王宇航,男,1999年生,吉林省长春市人,汉族,长春中医药大学药学院在读硕士,主要从事天然产物活性研究。
  • 基金资助:
    吉林省自然科学基金项目(YDZJ202401060ZYTS),项目负责人:孙聪;吉林省教育厅科学研究项目(JJKH20230949KJ),项目负责人:阎慧

Curcumin extraction and preparation and optimization of curcumin nanoparticles

Wang Yuhang1, Zhang Han1, Zhang Chaojing1, Kou Xurong1, Jing Tongtong1, Lin Rimei1, Liu Xinyu1, Lou Shilei2, Yan Hui2, Sun Cong2   

  1. 1College of Pharmacy, 2College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • Received:2024-07-06 Accepted:2024-09-05 Online:2026-01-18 Published:2025-06-17
  • Contact: Sun Cong, MD, Professor, Master’s supervisor, College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • About author:Wang Yuhang, Master candidate, College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • Supported by:
    Jilin Natural Science Foundation Project, No. YDZJ202401060ZYTS (to SC); Jilin Provincial Department of Education Scientific Research Project, No. JJKH20230949KJ (to YH)

摘要:

文题释义:
纳米粒:是指粒径范围保持在10-1 000 nm的固态纳米颗粒,是一种新型纳米制剂。使用纳米材料包裹药物具有良好的包封能力,并且可延缓药物释放、提高药物生物利用度。
超声提取法:是利用超声波的空化作用、机械效应和热效应等加速胞内有效物质的释放、扩散和溶解,显著提高提取效率的提取方法,是一种操作简便、绿色环保的提取技术。

背景:姜黄素是姜黄的主要活性成分,在抗肿瘤、抗炎、抗氧化等方面具有显著的药用价值,然而水溶性差、化学性质不稳定且易分解等导致姜黄素的提取困难、提取产率较低,因此,优化姜黄素提取方法显得尤为重要。
目的:为提高姜黄素的提取产率与利用价值,优化姜黄素提取工艺和姜黄素纳米粒制备工艺。
方法:采用乙醇提取法、超声提取法、离子液体提取法、酶提取法与离子液体联合超声辅助酶提取法分别从姜黄中提取姜黄素,通过高效液相色谱法检测姜黄素提取产率,确定最佳的提取方法,进行后续工艺优化实验。以离子液体种类、反应温度、超声时间、液料比、离子液体浓度、酶药质量比为参数,姜黄素提取产率为响应值,采用单因素结合响应面实验确定离子液体联合超声波辅助酶提取法的最佳制作工艺。以醋酸浓度、壳聚糖与三聚磷酸钠质量比、搅拌速率、姜黄素质量浓度、三聚磷酸钠质量浓度、壳聚糖质量浓度为参数,药物包封率为响应值,采用单因素结合响应面实验确定离子交联法制备姜黄素纳米粒的最优工艺。在最佳工艺下制备姜黄素纳米粒,检测纳米粒的粒径、多分散指数、Zata电位值、载药量、稳定性、溶血率与体内外抗氧化能力。
结果与结论:①在5种提取方法中,离子液体联合超声辅助酶提取的姜黄素产率最高,选取该方法作为姜黄素提取方法进行后续实验。单因素结合响应面实验结果显示,姜黄素提取的最佳工艺为:离子液体选择1-己基-3-甲基咪唑氯盐、反应温度55 ℃、液料比40 mL/g、超声时间57 min、离子液体浓度57%、酶药质量比为3.5∶10,所得姜黄提取产率为3.10%;姜黄素纳米粒的最佳制备工艺为:冰醋酸浓度0.5%、壳聚糖与三聚磷酸钠质量比为5.0∶1、搅拌速度150 r/min、姜黄素质量浓度2.23 mg/mL、三聚磷酸钠质量浓度1.45 mg/mL、壳聚糖质量浓度3.63 mg/mL,所得药物包封率为90.61%。②姜黄素纳米粒的载药量为(14.49±0.23)%,平均粒径为(76.95±1.65) nm,多分散系数为0.15±0.02,Zata电位值为(32.37±1.46) mV;姜黄素纳米粒具有良好的稳定性与血液相容性,未引发溶血反应,在体内外的抗氧化能力均强于游离姜黄素。③结果表明,工艺优化不仅解决了姜黄素提取产率低、溶解性差和生物利用度低等难题,并且增强了其体内外抗氧化活性。
https://orcid.org/0009-0003-8737-8478 (王宇航) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 姜黄素, 纳米粒, 制备工艺, 工艺优化, 抗氧化, 工程化纳米材料

Abstract: BACKGROUND: Curcumin is the main active ingredient of turmeric and has significant medicinal value in anti-tumor, anti-inflammatory, antioxidant and other aspects. However, its poor water solubility, unstable chemical properties and easy decomposition lead to difficulty in extracting curcumin and low extraction yield. Therefore, it is particularly important to optimize the curcumin extraction method.
OBJECTIVE: To enhance the extraction yield and utilization value of curcumin and optimize the curcumin extraction process and curcumin nanoparticle preparation process. 
METHODS: Curcumin was extracted from turmeric by ethanol extraction, ultrasonic extraction, ionic liquid extraction, enzyme extraction, and ionic liquid combined with ultrasonic assisted enzyme extraction. The curcumin extraction yield was detected by high performance liquid chromatography; the best extraction method was determined, and subsequent process optimization experiments were carried out. The curcumin extraction yield was the response value with the type of ionic liquid, reaction temperature, ultrasonic time, liquid-to-solid ratio, ionic liquid concentration, and enzyme-drug mass ratio as parameters. The optimal production process of ionic liquid combined with ultrasonic assisted enzyme extraction was determined by single factor combined response surface experiment. The optimal process for preparing curcumin nanoparticles by ionic crosslinking method was determined by single factor combined response surface experiment with acetic acid concentration, chitosan to sodium tripolyphosphate mass ratio, stirring rate, curcumin mass concentration, sodium tripolyphosphate mass concentration, and chitosan mass concentration as parameters, and drug encapsulation efficiency as response value. Curcumin nanoparticles were prepared under the optimal process, and the particle size, polydispersity index, Zata potential value, drug loading, stability, hemolysis rate, and antioxidant capacity in vivo and in vitro of the nanoparticles were detected.
RESULTS AND CONCLUSION: (1) Among the five extraction methods, the curcumin yield of ionic liquid combined with ultrasound-assisted enzyme extraction was the highest, and this method was selected as the curcumin extraction method for subsequent experiments. The results of single factor combined response surface experiment showed that the optimal process for curcumin extraction was: ionic liquid selected 1-hexyl-3-methylimidazolium chloride, reaction temperature 55 ℃, liquid-to-solid ratio 40 mL/g, ultrasound time 57 minutes, ionic liquid concentration 57%, enzyme-drug mass ratio 3.5:10, and the obtained turmeric extraction yield was 3.10%. The optimal preparation process of curcumin nanoparticles was: glacial acetic acid concentration 0.5%, chitosan and sodium tripolyphosphate mass ratio 5.0:1, stirring speed 150 r/min, curcumin mass concentration 2.23 mg/mL, sodium tripolyphosphate mass concentration 1.45 mg/mL, chitosan mass concentration 3.63 mg/mL, and the obtained drug encapsulation efficiency was 90.61%. (2) The drug loading of curcumin nanoparticles was (14.49±0.23)%, the average particle size was (76.95±1.65) nm, the polydispersity coefficient was 0.15±0.02, and the Zata potential value was (32.37±1.46) mV. The curcumin nanoparticles had good stability and blood compatibility, did not induce hemolysis, and had stronger antioxidant capacity in vivo and in vitro than free curcumin. (3) The results show that the process optimization not only solves the problems of low extraction yield, poor solubility, and low bioavailability of curcumin, but also enhances its antioxidant activity in vivo and in vitro.

Key words: curcumin, nanoparticle, preparation process, process optimization, antioxidant, engineered nanomaterial

中图分类号: