[1] ZHANG Q, CHON T, ZHANG Y, et al. Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Comput Biol Med. 2021;136:104745.
[2] PENG P, CHEN K, CHEN H, et al. Comparison of O-arm navigation and microscope-assisted minimally invasive transforaminal lumbar interbody fusion and conventional transforaminal lumbar interbody fusion for the treatment of lumbar isthmic spondylolisthesis. J Orthop Translat. 2020;20:107-112.
[3] 赵洪顺, 阿尖措, 王德元, 等. 影响外侧入路腰椎椎间融合器置入后早期椎间隙高度的因素[J]. 中国组织工程研究,2021,25(21): 3332-3336.
[4] 陈柳旭, 杨函, 杨剑, 等. 椎间融合与双侧经椎弓根经椎间盘螺钉置入后腰椎生物力学的有限元分析[J]. 中国组织工程研究,2024, 28(12):1815-1822.
[5] LOENEN A, PETERS M, BEVERS R, et al. Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Spine J. 2022;22(1):174-182.
[6] 姚汝斌, 王仕永, 杨开舜. 微创经椎间孔椎间融合治疗单节段腰椎管狭窄症对腰椎-骨盆平衡的改善作用[J]. 中国组织工程研究, 2021,25(9):1387-1392.
[7] TAN QC, LIU ZX, ZHAO Y, et al. Biomechanical comparison of four types of instrumentation constructs for revision surgery in lumbar adjacent segment disease: A finite element study. Comput Biol Med. 2021;134: 104477.
[8] HUA W, ZHI J, KE W, et al. Adjacent segment biomechanical changes after one- or two-level anterior cervical discectomy and fusion using either a zero-profile device or cage plus plate: A finite element analysis. Comput Biol Med. 2020;120:103760.
[9] LIU C, ZHAO M, ZHANG W, et al. Biomechanical assessment of different transforaminal lumbar interbody fusion constructs in normal and osteoporotic condition: a finite element analysis. Spine J. 2024;24(6):1121-1131.
[10] FOGEL G, MARTIN N, LYNCH K, et al. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis. Spine J. 2022;22(6):1028-1037.
[11] BASGUL C, MACDONALD DW, SISKEY R, et al. Thermal Localization Improves the Interlayer Adhesion and Structural Integrity of 3D printed PEEK Lumbar Spinal Cages. Materialia (Oxf). 2020;10:100650.
[12] LI JX, HSU TJ, HSU SB, et al. Strong association of lumbar disk herniation with diabetes mellitus: a 12-year nationwide retrospective cohort study. Front Endocrinol (Lausanne). 2023;14:1260566.
[13] BEUKERS M, GRINWIS G, VERNOOIJ J, et al. Epidemiology of Modic changes in dogs: Prevalence, possible risk factors, and association with spinal phenotypes. JOR Spine. 2023;6(3):e1273.
[14] PAN FM, WANG SJ, YONG ZY, et al. Risk factors for cage retropulsion after lumbar interbody fusion surgery: Series of cases and literature review. Int J Surg. 2016;30:56-62.
[15] LU T, REN J, SUN Z, et al. Relationship between the elastic modulus of the cage material and the biomechanical properties of transforaminal lumbar interbody fusion: A logarithmic regression analysis based on parametric finite element simulations. Comput Methods Programs Biomed. 2022;214:106570.
[16] LO WC, TSAI LW, YANG YS, et al. Understanding the Future Prospects of Synergizing Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery with Ceramics and Regenerative Cellular Therapies. Int J Mol Sci. 2021;22(7):3638.
[17] WANG R, WU Z. Recent advancement in finite element analysis of spinal interbody cages: A review. Front Bioeng Biotechnol. 2023;11: 1041973.
[18] AO S, ZHENG W, WU J, et al. Comparison of Preliminary clinical outcomes between percutaneous endoscopic and minimally invasive transforaminal lumbar interbody fusion for lumbar degenerative diseases in a tertiary hospital: Is percutaneous endoscopic procedure superior to MIS-TLIF? A prospective cohort study. Int J Surg. 2020;76: 136-143.
[19] BOCAHUT N, AUDUREAU E, POIGNARD A, et al. Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion. Orthop Traumatol Surg Res. 2018;104(3):405-410.
[20] TSAI CY, SU YF, KUO KL, et al. Minimally Invasive Transforaminal Lumbar Interbody Fusion for 2-Level Degenerative Lumbar Disease in Patients With Osteoporosis: Long-Term Clinical and Radiographic Outcomes. Oper Neurosurg (Hagerstown). 2021;20(6):535-540.
[21] CHENG X, ZHANG K, SUN X, et al. Unilateral versus bilateral pedicle screw fixation with transforaminal lumbar interbody fusion for treatment of lumbar foraminal stenosis. Spine J. 2022;22(10): 1687-1693.
[22] ZHAO L, XIE T, WANG X, et al. Comparing the medium-term outcomes of lumbar interbody fusion via transforaminal and oblique approach in treating lumbar degenerative disc diseases. Spine J. 2022;22(6): 993-1001.
[23] ALVI MA, KURIAN SJ, WAHOOD W, et al. Assessing the Difference in Clinical and Radiologic Outcomes Between Expandable Cage and Nonexpandable Cage Among Patients Undergoing Minimally Invasive Transforaminal Interbody Fusion: A Systematic Review and Meta-Analysis. World Neurosurg. 2019;127:596-606.e1.
[24] LIU Z, WANG H, YUAN Z, et al. High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration. Biofabrication. 2022;15(1). doi: 10.1088/1758-5090/aca71f.
[25] SCHWEIGER J, EDELHOFF D, GÜTH JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J Clin Med. 2021;10(9):2010.
[26] MANI G, PORTER D, GROVE K, et al. A comprehensive review of biological and materials properties of Tantalum and its alloys. J Biomed Mater Res A. 2022;110(6):1291-1306.
[27] PRZEKORA A, KAZIMIERCZAK P, WOJCIK M, et al. Mesh Ti6Al4V Material Manufactured by Selective Laser Melting (SLM) as a Promising Intervertebral Fusion Cage. Int J Mol Sci. 2022;23(7):3985.
[28] PRESTAT M, THIERRY D. Corrosion of titanium under simulated inflammation conditions: clinical context and in vitro investigations. Acta Biomater. 2021;136:72-87.
[29] LI W, HUANG C, MA T, et al. Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion. Stem Cell Res Ther. 2021;12(1):143.
[30] HUANG G, PAN ST, QIU JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces. 2022;210:112229.
[31] LAUBACH M, KOBBE P, HUTMACHER DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials. 2022;288:121699.
[32] ZHANG H, DUAN M, QIN S, et al. Preparation and Modification of Porous Polyetheretherketone (PEEK) Cage Material Based on Fused Deposition Modeling (FDM). Polymers (Basel). 2022;14(24):5403.
[33] JEON IS, LEE MH, CHOI HH, et al. Mechanical Properties and Bioactivity of Polyetheretherketone/Hydroxyapatite/Carbon Fiber Composite Prepared by the Mechanofusion Process. Polymers (Basel). 2021; 13(12):1978.
[34] SCHLAGER B, KRUMP F, BOETTINGER J, et al. Morphological patterns of the rib cage and lung in the healthy and adolescent idiopathic scoliosis. J Anat. 2022;240(1):120-130.
[35] KUANG B, XIANG X, SU P, et al. Self-assembly of stable and high-performance molecular cage-crosslinked graphene oxide membranes for contaminant removal. J Hazard Mater. 2022;439:129708.
[36] YU S, SUN T, LIU W, et al. PLGA Cage-Like Structures Loaded with Sr/Mg-Doped Hydroxyapatite for Repairing Osteoporotic Bone Defects. Macromol Biosci. 2022;22(8):e2200092.
[37] WANG K, WANG X, LI Z, et al. The Influence of Screw Positioning on Cage Subsidence in Patients with Oblique Lumbar Interbody Fusion Combined with Anterolateral Fixation. Orthop Surg. 2023;15(12): 3263-3271.
[38] HUANG SF, CHANG CM, LIAO CY, et al. Biomechanical evaluation of an osteoporotic anatomical 3D printed posterior lumbar interbody fusion cage with internal lattice design based on weighted topology optimization. Int J Bioprint. 2023;9(3):697.
[39] ABUDOUAINI H, WU T, MENG Y, et al. Biomechanical properties of a novel cervical spine implant with elastic deformation: a cadaveric study. Front Bioeng Biotechnol. 2023;11:1214877.
[40] PEZZOTTI G, MARIN E, ADACHI T, et al. Incorporating Si(3) N(4) into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. Macromol Biosci. 2018;18(6):e1800033. |