中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (12): 1800-1805.doi: 10.3969/j.issn.2095-4344.2016.12.019

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

氧化锆与纳米羟基磷灰石陶瓷的剪切实验

孙晓坤1,2,王方辉1,王青山1,王 晶3,王爱芹2,高玉光2   

  1. 滨州医学院附属医院,1儿童口腔科,3牙体牙髓科,山东省滨州市 256603;2滨州医学院,山东省滨州市 256603
  • 收稿日期:2016-02-02 出版日期:2016-03-18 发布日期:2016-03-18
  • 通讯作者: 王青山,教授,主任医师,滨州医学院附属医院儿童口腔科,山东省滨州市 256603
  • 作者简介:孙晓坤,女,1989年生,汉族,山东省莱州市人,硕士,主要从事口腔材料学研究。
  • 基金资助:
    山东省自然科学基金(ZR2013HM044);山东省医药卫生科技发展计(2013WS0308)

Shear strength of bonding interface between zirconia and nano-hydroxyapatite

Sun Xiao-kun1, 2, Wang Fang-hui1, Wang Qing-shan1, Wang Jing3, Wang Ai-qin2, Gao Yu-guang2   

  1. 1Department of Pediatric Dentistry, 3Department of Endodontics, Affiliated Hospital to Binzhou Medical University, Binzhou 256603, Shandong Province, China; 2Binzhou Medical University, Binzhou 256603, Shandong Province, China
  • Received:2016-02-02 Online:2016-03-18 Published:2016-03-18
  • Contact: Wang Qing-shan, Professor, Chief physician, Department of Pediatric Dentistry, Affiliated Hospital to Binzhou Medical University, Binzhou 256603, Shandong Province, China
  • About author:Sun Xiao-kun, Master, Department of Pediatric Dentistry, Affiliated Hospital to Binzhou Medical University, Binzhou 256603, Shandong Province, China; Binzhou Medical University, Binzhou 256603, Shandong Province, China
  • Supported by:

    the Natural Science Foundation of Shandong Province, No. ZR2013HM044; the Medical Science and Technology Development Project, No. 2013WS0308

摘要:

文章快速阅读:

文题释义:

氧化锆陶瓷:具有良好的生物相容性和机械物理性能,以及接近自然的美学效果,其良好的抗腐蚀性和抗热传导性也是金属材料所不可比拟的,是目前耐磨性最好、硬度最大的生物性陶瓷材料之一,生物相容性和美观效果更是优于纯钛,因此,自20世纪90年代初便开始了作为种植体的研究和应用。近年来随着生物陶瓷材料的研究发展,其作为种植体的研究越来越多,但由于其与纯钛相似的骨诱导缺陷,与骨组织难以形成有效的生物性结合。

纳米羟基磷灰石/氧化锆复合材料:纳米羟基磷灰石具有优异的生物相容性和生物活性,是应用于人体的生物活性首选材料,将其与氧化锆复合,能够充分发挥纳米羟基磷灰石的性能优势而避免各自缺陷。纳米羟基磷灰石/氧化锆复合材料置入后在组织表面可形成类骨磷灰石,除了特殊的矿化能力外,其释放出的离子产物可显著促进组织细胞的增殖、分化,具有较强的骨诱导和骨整合作用,提高了材料本身与骨组织界面的结合强度。  

 

背景:应用纳米羟基磷灰石作为表面改性材料经高温烧结结合于氧化锆陶瓷表面,可改善陶瓷材料的骨诱导活性,增强骨结合强度,而烧结温度是影响复合体性能和黏合的关键因素。
目的:检测不同烧结温度下纳米羟基磷灰石陶瓷涂层与氧化锆陶瓷黏结后的剪切强度。
方法:采用溶胶-凝胶技术制备纳米羟基磷灰石浆料,将其分层均匀涂布于20个氧化锆生坯表面,随机分为4组,将试件放置在无压烧结炉内,将烧结温度分别设定为1 300,1 400,1 500,1 550 ℃。利用万能材料试验机测定和计算烧结后4组试件的剪切强度,并观测分析断裂界面类型。
结果与结论:随着烧结温度的升高,试件抗剪切强度逐渐增加,组间抗剪切强度两两比较差异有显著性意义[(4.04±1.19),(6.60±0.95),(16.51±1.93),(80.47±19.31)MPa,P < 0.05],说明在温度为1 550 范围内,烧结温度与抗剪切强度呈正相关。结果表明,在一定的温度范围内,烧结温度越高,氧化锆与纳米羟基磷灰石陶瓷之间的抗剪切强度越高,温度为1 550 时,两者之间的抗剪切强度最高。 
 ORCID: 0000-0003-4357-6491(王青山)

关键词: 生物材料, 纳米材料, 纳米羟基磷灰石, 氧化锆, 陶瓷, 粘接, 烧结温度, 抗剪切强度, 断裂界面, 山东省自然科学基金

Abstract:

BACKGROUND: Nano-hydroxyapatite as a surface modification material that is bonded to the surface of the zirconia ceramics upon sintering at high temperature can improve bone-inducing activity and bone bonding strength of the zirconia ceramics. Moreover, the sintering temperature is crucial for performance and bonding of the composite.
OBJECTIVE: To detect the shear strength of nano-hydroxyapatite ceramics coating bonded to zirconia ceramics at different sintering temperatures.
METHODS: Nano-hydroxyapatite slurry was prepared using sol/gel technology. Thereafter, 20 zirconium green bodies were coated with nano-hydroxyapatite slurry and randomly divided into four groups. Then, the specimens were put into non-pressure sintering furnace and sintered at 1 300, 1 400, 1 500, and
1 550 ℃, respectively. At last, we measured the shear strength of all the specimens after sintering by universal testing machine, and analyze the type of fractures.
RESULTS AND CONCLUSION: With the rising of sintering temperature, the shear strength of the specimens was gradually increased, and there were significant differences between the four groups [(4.04±1.19), (6.60±0.95), (16.51±1.93), (80.47±19.31) MPa, P < 0.05]. Within the scope of 1 550 ℃, the sintering temperature was positively relative to the shear strength of specimens. These findings indicate that in the certain temperature range, the higher the sintering temperature, the greater the shear strength of the bonding interface between zirconia and nano-hydroxyapatite. When the sintering temperature is 1 550℃, the shear strength of the bonding interface is the highest.