中国组织工程研究 ›› 2014, Vol. 18 ›› Issue (21): 3310-3315.doi: 10.3969/j.issn.2095-4344.2014.21.006

• 药物控释材料 drug delivery materials • 上一篇    下一篇

海藻酸钠/壳聚糖复合凝胶的制备与细胞毒性评价

张林朴,王冠华,连小丽,李燕妮,代晓华   

  1. 天津市口腔医院暨南开大学口腔医院中心实验室,天津市  300041
  • 出版日期:2014-05-21 发布日期:2014-05-21
  • 作者简介:张林朴,男,1963年生,河北省定州市人,汉族,天津医科大学口腔医学院毕业,副主任医师,主要从事口腔颌面部组织工程与再生医学修复研究。
  • 基金资助:

    天津市卫生局科技基金资助项目(09kz50)

Preparation and cytotoxicity evaluation of chitosan-sodium alginate composite gel 

Zhang Lin-pu, Wang Guan-hua, Lian Xiao-li, Li Yan-ni, Dai Xiao-hua   

  1. Central Laboratory, Tianjin Stomatological Hospital, Stomatological Hospital of Nankai University, Tianjin 300041, China
  • Online:2014-05-21 Published:2014-05-21
  • About author:Zhang Lin-pu, Associate chief physician, Central Laboratory, Tianjin Stomatological Hospital, Stomatological Hospital of Nankai University, Tianjin 300041, China
  • Supported by:

    the Scientific Foundation of Tianjin Health Bureau, No. 09kz50 

摘要:

背景:海藻酸钠和壳聚糖分别是聚阳离子和聚阴离子的天然高分子材料,二者可以互为交联剂形成复合凝胶,避免使用普通交联剂产生的细胞毒性。
目的:制备海藻酸钠壳聚糖复合凝胶并评价其体外细胞毒性。
方法:以0.25 mol/L乙酸溶解壳聚糖,制成质量浓度30 g/L溶液,再以0.1 mol/L的NaOH中和酸性得到壳聚糖絮状沉淀,将壳聚糖絮状沉淀与质量浓度3%海藻酸钠等比例混合,高频振动混匀,使二者形成复合凝胶。使用傅里叶变换红外光谱、扫描电镜分析观察凝胶成分和交联纤维网络结构。分别以海藻酸钠壳聚糖复合凝胶24,72 h浸提液、聚乙烯24,72 h浸提液及苯酚溶液培养L-929细胞,体外检测其细胞毒性。
结果与结论:傅里叶变换红外光谱检测到海藻酸钠壳聚糖复合凝胶特征性峰值改变,扫描电镜显示其内部形成丰富间隙的空间网络结构。浸提液法检测海藻酸钠壳聚糖复合凝胶的细胞毒性为合格,表明海藻酸钠/壳聚糖复合凝胶具有成为组织工程支架材料的良好条件。


中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程


全文链接:

关键词: 生物材料, 口腔生物材料, 海藻酸钠, 壳聚糖, 复合凝胶, 支架材料, 细胞毒性

Abstract:

BACKGROUND: Sodium alginate and chitosan are the polycation and polyanion natural polymer materials respectively, and they can be crosslinking agents complementing each other to form composite gel and avoid the cytotoxicity resulting from some common crosslinking agents .
OBJECTIVE: To prepare the chitosan-sodium alginate composite gel and evaluate its cytotoxicity in vitro.
METHODS: Chitosan was dissolved in 0.25 mol/L acetic acid to make a 30 g/L mass concentration solution, and 0.1 mol/L NaOH solution was added to neutralize its acidity. Neutralization of the chitosan solutions leads to the formation of a precipitate in ultrasmall particles. Then the chitosan and 3% sodium alginate solution in deionized water were mixed in 1:1 volume ratio by high frequency oscillating to produce composite gel. The composite gel were detected by scanning electron microscopy and Fourier transform infrared spectrometry after freeze-drying. The 24-hour and 72-hour leaching solutions of composite gel, 24-hour and 72-hour leaching solutions of polyethylene and phenol solution were added to the L-929 cells’ culture medium respectively in order to evaluate the cytotoxicity of composite gel in vitro.
RESULTS AND CONCLUSION: The results of Fourier transform infrared spectrometry showed the variation of characteristic peak values of composite gel which were different from sodium alginate and chitosan; and under scanning electron microscope, a spatial network structure formed with abundant intervals. Result of the cytotoxicity valuation was qualified for the chitosan-sodium alginate composite gel. These findings indicate that the chitosan-sodium alginate composite gel can be used as tissue engineering scaffold materials.


中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程


全文链接:

Key words: chitosan, gels, cytotoxicity tests, immunologic

中图分类号: