中国组织工程研究 ›› 2013, Vol. 17 ›› Issue (17): 3164-3173.doi: 10.3969/j.issn.2095-4344.2013.17.017
• 骨与关节综述 bone and joint review • 上一篇 下一篇
张 强,伍 勰
收稿日期:
2012-09-15
修回日期:
2012-11-29
出版日期:
2013-04-23
发布日期:
2013-04-23
通讯作者:
伍勰,副教授,硕士生导师,上海体育学院运动科学学院运动技能研究中心,上海市
200438
wuxie1115@yahoo.com.cn
作者简介:
张强★,男,1988年生,黑龙江省哈尔滨市人,汉族,上海体育学院运动科学学院在读硕士,主要从事运动生物力学方向的研究。
wscr880701@163.com
基金资助:
上海市科委地方院校能力建设项目(12490503200);运动健身科技省部共建教育部重点实验室(上海体育学院)项目
Zhang Qiang, Wu Xie
Received:
2012-09-15
Revised:
2012-11-29
Online:
2013-04-23
Published:
2013-04-23
Contact:
Wu Xie, Associate professor, Master’s supervisor, Sports Performance Research Center, Sports Science Institute of Shanghai University of Sport, Shanghai 200438, China
wuxie1115@yahoo.com.cn
About author:
Zhang Qiang★, Studying for master’s degree, Sports Performance Research Center, Sports Science Institute of Shanghai University of Sport, Shanghai 200438, China
wscr880701@163.com
摘要:
背景:膝关节前交叉韧带非接触性损伤严重的挑战着人体健康以及运动能力,对损伤的生物力学研究有助于探究和预防膝关节前交叉韧带损伤。 目的:对膝关节前交叉韧带非接触性损伤的生物力学因素进行阐述,探讨损伤的研究方法以及预防措施的新进展。 方法:由作者应用计算机检索PubMed数据库及CNKI数据1979至2011年相关文献,在英文标题和摘要中以 “anterior cruciate ligament,injury”和“anterior cruciate ligament,biomechanics”等关键词检索,中文文献检索以“逆向动力学”为关键词,选择内容与膝关节前交叉韧带损伤的生物力学研究、落地与损伤的关系、损伤的预防等相关的文献。共纳入文献67篇。 结果与结论:膝关节前交叉韧带非接触性损伤的因素较为复杂,且各种因素相互交错。对不同损伤因素的影响程度的研究较为有限。但是损伤的生物力学因素可以较为直观的解释运动中损伤的原理机制。因而损伤的生物力学研究方法的创新为揭示膝关节前交叉韧带损伤的本质原理和损伤的预防提供了新思路。同时应用正确的训练方法对预防损伤尤其是膝关节前交叉韧带非接触性损伤具有良好的效果。
中图分类号:
张 强,伍 勰. 膝关节前交叉韧带非接触性损伤的生物力学研究进展[J]. 中国组织工程研究, 2013, 17(17): 3164-3173.
Zhang Qiang, Wu Xie. Biomechanical research progress of non-contact anterior cruciate ligament injury[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(17): 3164-3173.
F²=Fx²+Fy²
|
Fx=TSF+Fm
|
TSF=Fx-Fqx-Fhx-Fgx
|
[1] Noyes FR, Mooar PA, Matthews DS, et al. The symptomatic anterior cruciate-deficient knee. Part I: The long-term functional disability in athletically active individuals. J Bone Joint Surg. 1983;65(2):154-162.http://www.ncbi.nlm.nih.gov/pubmed/6687391[2] McLean SG, Beaulieu ML. Complex integrative morphological and mechanical contributions to ACL injury risk. Exerc Sport Sci Rev. 2010;38(4):192-200. http://www.ncbi.nlm.nih.gov/pubmed/20871236[3] Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. Am J Sports Med. 1995;23(6):694-701.http://www.ncbi.nlm.nih.gov/pubmed/8600737[4] Dufek JS, Bates BT. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991;12(5): 326-337.http://www.ncbi.nlm.nih.gov/pubmed/1763250[5] Bennett DR, Blackburn JT, Boling MC, et al. The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength. Clin Biomech (Bristol, Avon). 2008;23(9):1165-1171.http://www.ncbi.nlm.nih.gov/pubmed/18599168[6] Chandy T, Grana W. Secondary school athletic injury in boys and girls: a three year comparison. Phys Sports Med.1985; 5(5):629-634.http://www.yuncheng.com/read/book/30318/10111/1[7] Huston LJ, Wojtys EM. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996;24(4):427-436.http://www.ncbi.nlm.nih.gov/pubmed/8827300[8] Henry JC, Kaeding C. Neuromuscular differences between male and female athletes. Curr Womens Health Rep. 2001;1(3):241-244.http://www.ncbi.nlm.nih.gov/pubmed/12112976[9] Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26(3):402-408.http://www.ncbi.nlm.nih.gov/pubmed/9617403[10] Gray J, et al. A survey of injuries to the anterior cruciate ligament of the knee in female basketball players. Int J Sports Med. 1985;6(6):314-316.http://www.ncbi.nlm.nih.gov/pubmed/4077357[11] Wojtys EM, Huston LJ, Lindenfeld TN, et al. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am J Sports Med. 1998;26(5): 614-619.http://www.ncbi.nlm.nih.gov/pubmed/10102119[12] Hewett TE, Stroupe AL, Nance TA, et al. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996; 24(6):765-773.http://www.ncbi.nlm.nih.gov/pubmed/8947398[13] Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394-412.http://www.ncbi.nlm.nih.gov/pubmed/18539658[14] Kulas AS, Hortobágyi T, Devita P. The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. J Athl Train. 2010; 45(1):5-15.http://www.ncbi.nlm.nih.gov/pubmed/20064042[15] Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21(4):535-539.http://www.ncbi.nlm.nih.gov/pubmed/8368414[16] LaPrade RF, Burnett QM 2nd. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med. 1994;22(2):198-202.http://www.ncbi.nlm.nih.gov/pubmed/8198187[17] Everhart JS, Flanigan DC, Simon RA, et al. Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med. 2010;38 (8):1667-1673.http://www.ncbi.nlm.nih.gov/pubmed/20489214[18] Simon RA, Everhart JS, Nagaraja HN, et al. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech. 2010;43(9):1702-1707.http://www.ncbi.nlm.nih.gov/pubmed/20385387[19] Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76(5):745-749.http://www.ncbi.nlm.nih.gov/pubmed/8083263[20] Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008;16(2):112-117.http://www.ncbi.nlm.nih.gov/pubmed/18239948[21] Bisson LJ, Gurske-DePerio J. Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy. 2010;26(7): 901-906.http://www.ncbi.nlm.nih.gov/pubmed/20620789[22] Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008; 90(12): 2724-2734.http://www.ncbi.nlm.nih.gov/pubmed/19047719[23] Uhorchak JM, Scoville CR, Williams GN, et al. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831-842.http://www.ncbi.nlm.nih.gov/pubmed/14623646[24] Yu WD, Liu SH, Hatch JD, et al. Effect of estrogen on cellular metabolism of the human anterior cruciate ligament. Clin Orthop Relat Res. 1999;(366):229-238.http://www.ncbi.nlm.nih.gov/pubmed/10627740[25] Yu WD, Panossian V, Hatch JD, et al. Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop Relat Res. 2001;(383):268-281.http://www.ncbi.nlm.nih.gov/pubmed/11210964[26] Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86-92.http://www.ncbi.nlm.nih.gov/pubmed/16558564[27] Arendt EA, Bershadsky B, Agel J. Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gend Specif Med. 2002;5(2):19-26.http://www.ncbi.nlm.nih.gov/pubmed/11974671[28] Adachi N, Nawata K, Maeta M, et al. Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes. Arch Orthop Trauma Surg. 2008; 128(5):473-478.http://www.ncbi.nlm.nih.gov/pubmed/17909824[29] Beynnon BD, Johnson RJ, Braun S, et al. The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case-control study of recreational alpine skiers. Am J Sports Med. 2006;34(5):757-764.http://www.ncbi.nlm.nih.gov/pubmed/16436538[30] Brown CN, Yu B, Kirkendall DT, et al. Effects of increased body mass index on lower extremity motion patterns in a stop-jump task: National Athletic Trainers Association annual meeting. J Athl Train. 2005;40(2):S32.http://www.biomedsearch.com/article/Two-different-fatigue-protocols-lower/280720721.html[31] Harner CD, Paulos LE, Greenwald AE, et al. Detailed analysis of patients with bilateral anterior cruciate ligament injuries. Am J Sports Med. 1994;22(1):37-43.http://www.ncbi.nlm.nih.gov/pubmed/8129108[32] Posthumus M, Collins M, September AV, et al. The intrinsic risk factors for ACL ruptures: an evidence-based review. Phys Sportsmed. 2011;39(1):62-73.http://www.ncbi.nlm.nih.gov/pubmed/21378488[33] Posthumus M, September AV, Keegan M, et al. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med. 2009;43(5):352-356.http://www.ncbi.nlm.nih.gov/pubmed/19193663[34] Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskelet Disord. 2006 Mar 7;7:22.http://www.ncbi.nlm.nih.gov/pubmed/16522210[35] Decker MJ, Torry MR, Noonan TJ, et al. Landing adaptations after ACL reconstruction. Med Sci Sports Exerc. 2002;34(9): 1408-1413.http://www.ncbi.nlm.nih.gov/pubmed/12218731[36] Liu-Barba D, Hull ML, Howell SM. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study. J Biomech Eng. 2007;129(6):818-824.http://www.ncbi.nlm.nih.gov/pubmed/18067385[37] Chappell JD, Creighton RA, Giuliani C, et al. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35(2):235-241.http://www.ncbi.nlm.nih.gov/pubmed/17092926[38] Beutler A, de la Motte S, Marshall S, et al. Muscle Strength And Qualitative Jump-Landing Differences In Male And Female Military Cadets: The Jump-Acl Study. J Sports Sci Med. 2009;8:663-671.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995501[39] Lephart SM, Ferris CM, Riemann BL, et al. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res. 2002;(401):162-169.http://www.ncbi.nlm.nih.gov/pubmed/12151893[40] Chappell JD, Yu B, Kirkendall DT, et al. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261-267.http://www.ncbi.nlm.nih.gov/pubmed/11912098[41] Thomas AC, Palmieri-Smith RM, McLean SG. Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury. Scand J Med Sci Sports. 2011;21(3):359-368.http://www.ncbi.nlm.nih.gov/pubmed/20136750[42] Tiamklang T, Sumanont S, Foocharoen T, et al. Double-bundle versus single-bundle reconstruction for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2012;11:CD008413.http://www.ncbi.nlm.nih.gov/pubmed/23152258[43] Shelburne KB, Torry MR, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc. 2005;37(11):1948-1956. http://www.ncbi.nlm.nih.gov/pubmed/16286866[44] Myer GD, Ford KR, Barber Foss KD, et al. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009; 19(1): 3-8.http://www.ncbi.nlm.nih.gov/pubmed/19124976[45] Hewett TE, Myer GD, Zazulak BT. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport. 2008;11(5):452-459.[PubMed]: http://www.ncbi.nlm.nih.gov/pubmed/17875402[46] Huston LJ, Wojtys EM. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996;24(4):427-436.http://www.ncbi.nlm.nih.gov/pubmed/8827300[47] Brazen DM, Todd MK, Ambegaonkar JP, et al. The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med. 2010;20(4):286-292.http://www.ncbi.nlm.nih.gov/pubmed/20606514[48] Borotikar BS, Newcomer R, Koppes R, et al. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech (Bristol, Avon). 2008;23(1):81-92.http://www.ncbi.nlm.nih.gov/pubmed/17889972[49] Chappell JD, Herman DC, Knight BS, et al. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med. 2005;33(7):1022-1029.http://www.ncbi.nlm.nih.gov/pubmed/15983125[50] Patrek MF, Kernozek TW, Willson JD, et al. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J Athl Train. 2011;46(1):31-42.http://www.ncbi.nlm.nih.gov/pubmed/16423915[51] Shelburne KB, Pandy MG, Torry MR. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech. 2004;37(3):313-319.[PubMed]: http://www.ncbi.nlm.nih.gov/pubmed/14757450[52] Christel PS, Akgun U, Yasar T, et al. The contribution of each anterior cruciate ligament bundle to the Lachman test: a cadaver investigation. J Bone Joint Surg Br. 2012;94(1): 68-74.[PubMed]: http://www.ncbi.nlm.nih.gov/pubmed/22219250[53] Moglo KE, Shirazi-Adl A. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee. 2003;10(3):265-276.http://www.ncbi.nlm.nih.gov/pubmed/12893149[54] McLean SG, Fellin RE, Suedekum N, et al. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39(3):502-514.http://www.ncbi.nlm.nih.gov/pubmed/17473777[55] Taylor KA, Terry ME, Utturkar GM, et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech. 2011;44(3):365-371.http://www.ncbi.nlm.nih.gov/pubmed/21092960[56] Schache AG, Baker R. On the expression of joint moments during gait. Gait Posture. 2007;25(3):440-452.http://www.ncbi.nlm.nih.gov/pubmed/17011192[57] Myers CA, Hawkins D. Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance. J Biomech. 2010;43(14):2657-2664.http://www.ncbi.nlm.nih.gov/pubmed/20667541[58] 施宝兴, 魏文仪. 逆向动力学计算方法及提高计算精度的探讨[J].南京体育学院学报,2003,2(2):6-12.http://www.cnki.com.cn/Article/CJFDTotal-NTXZ200302001.htm[59] Paul DeVita, Tibor Hortobagyi. Functional knee brace alters predicted knee muscle and joint forces in people with ACL reconstruction during walking. Journal of Applied Biomechanics. 2001;17(4):297-311.http://www.ncbi.nlm.nih.gov/pubmed/23496903[60] Shelburne KB, Pandy MG. Determinants of cruciate-ligament loading during rehabilitation exercise. Clin Biomech (Bristol, Avon). 1998;13(6):403-413.http://www.ncbi.nlm.nih.gov/pubmed/11415815[61] Pandy MG, Shelburne KB. Theoretical analysis of ligament and extensor-mechanism function in the ACL-deficient knee. Clin Biomech.1998;13(2):98-111.http://www.ncbi.nlm.nih.gov/pubmed/11415777[62] Pandy MG, Sasaki K, Kim S. A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construct. Comput Methods Biomech Biomed Engin. 1998;1(2):87-108.http://www.ncbi.nlm.nih.gov/pubmed/11264799[63] Gao B, Cordova ML, Zheng NN. Three-dimensional joint kinematics of ACL-deficient and ACL-reconstructed knees during stair ascent and descent. Hum Mov Sci. 2012;31(1): 222-235.http://www.ncbi.nlm.nih.gov/pubmed/21798608[64] Hewett TE, Lindenfeld TN. The effect of neuromuscular training on the incidence of knee injury in female athletes. The American journal Of Sports Medicine. 1999; 27(6): 699-706.http://www.ncbi.nlm.nih.gov/pubmed/11101120[65] 刘向辉,汪黎明,王安利. Plyometric练习的研究进展[J]. 邵阳学院学报(自然科学版),2008,5(2):103-107.http://www.cnki.com.cn/Article/CJFDTotal-SYXZ200802034.htm[66] Hewett TE, Myer GD, Ford KR. Reducing knee and anterior cruciate ligament injuries among female athletes: a systematic review of neuromuscular training interventions. J Knee Surg. 2005;18(1):82-88.http://www.ncbi.nlm.nih.gov/pubmed/15742602[67] Myer GD, Ford KR, Brent JL, et al. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2):345-353.http://www.ncbi.nlm.nih.gov/pubmed/16686562 |
[1] | 徐 峰, 康 辉, 魏坦军, 席金涛. 椎弓根螺钉不同固定方法治疗胸腰椎骨折的生物力学分析[J]. 中国组织工程研究, 2021, 25(9): 1313-1317. |
[2] | 陈心敏, 李文标, 熊凯凯, 熊晓燕, 郑利钦, 李木生, 郑永泽, 林梓凌. 钉道强化股骨近端防旋髓内钉治疗老年A3.3型股骨转子间骨折:最佳骨水泥量有限元分析[J]. 中国组织工程研究, 2021, 25(9): 1404-1409. |
[3] | 周继辉, 李新志, 周 游, 黄 卫, 陈文瑶. 髌骨骨折修复内植物选择的多重问题[J]. 中国组织工程研究, 2021, 25(9): 1440-1445. |
[4] | 许玉林, 沈 师, 卓乃强, 杨惠麟, 杨 超, 李 洋, 赵 恒, 赵 露. 髋臼后柱骨折3种不同钢板固定后站立及坐立位下的生物力学比较[J]. 中国组织工程研究, 2021, 25(6): 826-830. |
[5] | 蔡群斌, 邹 霞, 胡剑涛, 陈心敏, 郑利钦, 黄培镇, 林梓凌, 姜自伟. 有限元法分析尖顶距与股骨近端防旋髓内钉固定股骨转子间骨折稳定性的关系[J]. 中国组织工程研究, 2021, 25(6): 831-836. |
[6] | 刘少华, 周观明, 陈希聪, 肖可明, 蔡 剑, 刘效仿. 前交叉韧带缺陷对固定平台单髁置换后中期疗效的影响[J]. 中国组织工程研究, 2021, 25(6): 860-865. |
[7] | 宋成杰, 常恒瑞, 石明鑫, 孟宪中. 侧方入路腰椎融合治疗后的生物力学稳定性的研究与进展[J]. 中国组织工程研究, 2021, 25(6): 923-928. |
[8] | 谢崇新, 张 磊. 保留与不保留残端重建前交叉韧带术后膝关节退变的比较[J]. 中国组织工程研究, 2021, 25(5): 735-740. |
[9] | 马子越, 巨啸晨, 张 磊, 孙荣鑫. 保留与不保留残端重建前交叉韧带后移植物腱骨愈合的比较[J]. 中国组织工程研究, 2021, 25(4): 582-587. |
[10] | 周继辉, 李新志, 周 游, 黄 卫, 陈文瑶. 创伤性胸锁关节脱位多种内置物治疗优劣的比较[J]. 中国组织工程研究, 2021, 25(3): 443-448. |
[11] | 聂少波, 李建涛, 孙基恩, 赵 喆, 赵燕鹏, 张里程, 唐佩福. 内侧支撑髓内钉置入支撑治疗严重骨质疏松性股骨转子间骨折的力学稳定性[J]. 中国组织工程研究, 2021, 25(3): 329-333. |
[12] | 谭家昌, 袁振超, 吴振杰, 刘 斌, 赵劲民. 弹性钉结合尾帽和钢丝固定长斜形股骨干骨折的生物力学分析[J]. 中国组织工程研究, 2021, 25(3): 334-338. |
[13] | 陈 路, 张建光, 邓长弓, 严才平, 张 伟, 张 袁. 锁定螺钉辅助髋臼杯不同固定方式的有限元分析[J]. 中国组织工程研究, 2021, 25(3): 356-361. |
[14] | 熊小龙, 王广积, 方业汉, 杜秀藩, 黄 晖, 叶志方 . 自体腘绳肌重建前交叉韧带中可吸收螺钉和金属螺钉胫骨固定效果比较的Meta分析[J]. 中国组织工程研究, 2021, 25(21): 3438-3444. |
[15] | 刘玉琳, 李国泰. 高压氧、振动训练与虾青素联合干预糖尿病骨质疏松模型大鼠骨密度、糖代谢及氧化应激的变化[J]. 中国组织工程研究, 2021, 25(20): 3117-3124. |
1.1 资料来源 第一作者在2012年7月应用计算机检索PubMed数据库(Http://www.ncbi.nim.nih.gov/PubMed),在英文标题和摘要中以关键词“ACL、biomechanics”、“ACL、 injury”、“landing injury”检索。同时检索CNKI数据库(www.cnki.net/inde x.htm)1979/2011,检索关键词为“逆向动力学”,检索时限1999年1
1.3 检索结果及评价 计算机初检到730篇,排除研究目的与本文无关的文献390篇,内容重复性研究及非核心文献273篇,共67篇文献符合标准,中文2篇,英文65篇。所有选用的文献均为相关性较强,并具有代表性和权威性,能体现出膝关节前交叉韧带损伤生物力学研究的最新动向。
1 前交叉韧带损伤的影响因素包含多个方面,其研究方法有多种途径。已有一定数量的文献着重于研究前交叉韧带损伤机制以及预防手段。 2 虽然目前预防前交叉韧带损伤的方案有多种,但很少有能够含入影响损伤的确切生物力学因素。尤其考虑到这些因素与前交叉韧带非接触性损伤之间关系紧密,因而对于这些因素的准确把握有助于完善预防机制,降低损伤发生率。 3 前交叉韧带损伤在康复治疗中是一种常见的情况。了解影响损伤的生物力学机制可以丰富康复治疗中的治疗手段、监控恢复情况、降低损伤复发率。同时,可以显著降低前交叉韧带损伤康复患者出现膝关节骨关节炎的比率。
膝关节前交叉韧带损伤患者出现膝关节炎的比率仍然比正常人高得多,在有关膝关节前交叉韧带损伤的研究领域中,除了对膝关节前交叉韧带重建手术以及其术后康复的临床研究外,对膝关节前交叉韧带损伤的生物力学机制的探讨一直是受人关注的研究方向,因为这对于预防膝关节前交叉韧带损伤有着现实的指导意义。文章回顾并总结了膝关节前交叉韧带损伤的导致因素、影响条件以及研究和预防方法等。作为人体最重要的关节之一,膝关节的组织结构的损伤关乎到人体的运动能力,所以对于损伤预防的方法的研究是尤为重要的。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||