中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (4): 597-605.doi: 10.3969/j.issn.2095-4344.1042
• 骨与关节综述 bone and joint review • 上一篇 下一篇
汤其元1,马亚萍2,3,张 斌4,罗南宁1,王 信2,3,张 怡5
出版日期:
2019-02-08
发布日期:
2019-02-08
通讯作者:
王信,博士,副主任医师,遵义医科大学附属医院骨科,遵义医科大学-罗切斯特大学骨科研究中心,贵州省遵义市 563000
张怡,博士,副教授,遵义医科大学公共卫生学院,贵州省遵义市 563000
作者简介:
汤其元,女,1994年生,贵州省人,汉族,遵义医科大学在读学士,主要从事骨缺损和骨愈合方面的研究。
共同第一作者:马亚萍,遵义医科大学附属医院骨科,遵义医科大学-罗切斯特大学骨科研究中心,贵州省遵义市 563000
基金资助:
国家自然科学基金(31760266),项目负责人:王信;遵义医学院大学生创新训练项目(遵医201751052),项目负责人:汤其元
Tang Qiyuan1, Ma Yaping2, 3, Zhang Bin4, Luo Nanning1, Wang Xin2, 3, Zhang Yi5
Online:
2019-02-08
Published:
2019-02-08
Contact:
Wang Xin, PhD, Associate chief physician, Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Joint Orthopedics Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi 563000, Guizhou Province, China
Zhang Yi, PhD, Associate professor, School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
About author:
Tang Qiyuan, The First Clinical Institute, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
Ma Yaping, Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Joint Orthopedics Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi 563000, Guizhou Province, China
Tang Qiyuan and Ma Yaping contributed equally to this work.
Supported by:
the National Natural Science Foundation of China, No. 31760266 (to WX); the College Students Innovation Training Program of Zunyi Medical University, No. 201751052 (to TQY)
摘要:
文章快速阅读:
中图分类号:
汤其元, 马亚萍, 张 斌, 罗南宁, 王 信, 张 怡. 骨组织再生工程中富血小板血浆的应用与研究进展[J]. 中国组织工程研究, 2019, 23(4): 597-605.
Tang Qiyuan, Ma Yaping, Zhang Bin, Luo Nanning, Wang Xin, Zhang Yi. Application and research progress of platelet-rich plasma in bone tissue regeneration [J]. Chinese Journal of Tissue Engineering Research, 2019, 23(4): 597-605.
[1] O'Keefe RJ. Fibrinolysis as a Target to Enhance Fracture Healing. N Engl J Med. 2015;373(18):1776-1778. [2] Sinder BP, Salemi JD, Ominsky MS, et al. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115-123. [3] Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12): 1613-1629. [4] Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45-54. [5] Gomez-Barrena E, Rosset P, Lozano D, et al. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93-101. [6] Zhou L, Hu C, Chen Y, et al. Investigations of silk fiber/calcium phosphate cement biocomposite for radial bone defect repair in rabbits. J Orthop Surg Res. 2017;12(1):32. [7] Castro AB, Meschi N, Temmerman A, et al. Regenerative potential of leucocyte- and platelet-rich fibrin. Part B: sinus floor elevation, alveolar ridge preservation and implant therapy. A systematic review. J Clin Periodontol. 2017;44(2):225-234. [8] Castro AB, Meschi N, Temmerman A, et al. Regenerative potential of leucocyte- and platelet-rich fibrin. Part A: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and meta-analysis. J Clin Periodontol. 2017;44(1):67-82. [9] Harke H, Tanger D, Furst-Denzer S, et al. Effect of a preoperative separation of platelets on the postoperative blood loss subsequent to extracorporeal circulation in open heart surgery (author's transl). Anaesthesist. 1977;26(2): 64-71. [10] Nagata MJ, Messora MR, Furlaneto FA, et al. Effectiveness of two methods for preparation of autologous platelet-rich plasma: an experimental study in rabbits. Eur J Dent. 2010; 4(4):395-402. [11] Yuan T, Zhang C, Zeng B. Treatment of chronic femoral osteomyelitis with platelet-rich plasma (PRP): a case report. Transfus Apher Sci. 2008;38(2):167-173. [12] Pietramaggiori G, Scherer SS, Mathews JC, et al. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model. Wound Repair Regen. 2008;16(2):218-225. [13] Bajaj P, Pradeep AR, Agarwal E, et al. Comparative evaluation of autologous platelet-rich fibrin and platelet-rich plasma in the treatment of mandibular degree II furcation defects: a randomized controlled clinical trial. J Periodontal Res. 2013;48(5):573-581. [14] Cassano JM, Kennedy JG, Ross KA, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2018;26(1):333-342. [15] Jeon YR, Jung BK, Roh TS, et al. Comparing the Effect of Nonactivated Platelet-Rich Plasma, Activated Platelet-Rich Plasma, and Bone Morphogenetic Protein-2 on Calvarial Bone Regeneration. J Craniofac Surg. 2016;27(2):317-321. [16] Dimauro I, Grasso L, Fittipaldi S, et al. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One. 2014;9(7):e102993. [17] Kim SJ, Kim SY, Kwon CH, et al. Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors. 2007;25(2):77-86. [18] Weibrich G, Gnoth SH, Otto M, et al. Growth stimulation of human osteoblast-like cells by thrombocyte concentrates in vitro. Mund Kiefer Gesichtschir. 2002;6(3):168-174. [19] Lindeboom JA, Mathura KR, Aartman IH, et al. Influence of the application of platelet-enriched plasma in oral mucosal wound healing. Clin Oral Implants Res. 2007;18(1):133-139.[20] Pavlovic V, Ciric M, Jovanovic V, et al. Platelet Rich Plasma: a short overview of certain bioactive components. Open Med (Wars). 2016;11(1):242-247. [21] Roh YH, Kim W, Park KU, et al. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res. 2016;5(2):37-45. [22] Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135-2140. [23] Zhou Y, Zhang J, Wu H, et al. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015;6:173. [24] Filardo G, Kon E, Pereira Ruiz MT, et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single- versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2082-2091. [25] Riboh JC, Saltzman BM, Yanke AB, et al. Effect of Leukocyte Concentration on the Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis. Am J Sports Med. 2016; 44(3):792-800. [26] Liacini A, Sylvester J, Li WQ, et al. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002;21(3): 251-262. [27] Cavallo C, Filardo G, Mariani E, et al. Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Joint Surg Am. 2014;96(5):423-429. [28] Yin W, Xu H, Sheng J, et al. Comparative evaluation of the effects of plateletrich plasma formulations on extracellular matrix formation and the NFkappaB signaling pathway in human articular chondrocytes. Mol Med Rep. 2017;15(5): 2940-2948. [29] Shiga Y, Orita S, Kubota G, et al. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats. Sci Rep. 2016;6:36715. [30] Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res. 2016;4:16036. [31] Mussano F, Genova T, Munaron L, et al. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets. 2016;27(5):467-471. [32] Balogh ZJ, Reumann MK, Gruen RL, et al. Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet. 2012;380(9847): 1109-1119. [33] Liu M, Zhong S, Kong R, et al. Paeonol alleviates interleukin-1beta-induced inflammatory responses in chondrocytes during osteoarthritis. Biomed Pharmacother. 2017;95:914-921. [34] Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513-520. [35] Wang X, Luo Y, Masci PP, et al. Influence of Interleukin-1 Beta on Platelet-Poor Plasma Clot Formation: A Potential Impact on Early Bone Healing. PLoS One. 2016;11(2): e0149775. [36] DiBattista JA, Martel-Pelletier J, Wosu LO, et al. Glucocorticoid receptor mediated inhibition of interleukin-1 stimulated neutral metalloprotease synthesis in normal human chondrocytes. J Clin Endocrinol Metab. 1991;72(2): 316-326. [37] Yang J, Lu Y, Guo A. Platelet-rich plasma protects rat chondrocytes from interleukin-1beta-induced apoptosis. Mol Med Rep. 2016;14(5):4075-4082. [38] Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer. 2007;110(9):1911-1928. [39] Flower L, Gray R, Pinkney J, et al. Stimulation of interleukin-6 release by interleukin-1beta from isolated human adipocytes. Cytokine. 2003;21(1):32-37. [40] Wang X, Luo Y, Liao WB, et al. Effect of osteoprotegerin in combination with interleukin-6 on inhibition of osteoclast differentiation. Chin J Traumatol. 2013;16(5):277-280. [41] Huang L, Liu S, Song T, et al. Blockade of Interleukin 6 by Rat Anti-mouse Interleukin 6 Receptor Antibody Promotes Fracture Healing. Biochemistry (Mosc). 2017;82(10): 1193-1199. [42] Loi F, Cordova LA, Pajarinen J, et al. Inflammation, fracture and bone repair. Bone. 2016;86:119-130. [43] Edderkaoui B. Potential Role of Chemokines in Fracture Repair. Front Endocrinol (Lausanne). 2017;8:39. [44] Liu KG, He QH, Tan JW, et al. Expression of TNF-alpha, VEGF, and MMP-3 mRNAs in synovial tissues and their roles in fibroblast-mediated osteogenesis in ankylosing spondylitis. Genet Mol Res. 2015;14(2):6852-6858. [45] Sun M, Yang J, Wang J, et al. TNF-alpha is upregulated in T2DM patients with fracture and promotes the apoptosis of osteoblast cells in vitro in the presence of high glucose. Cytokine. 2016;80:35-42. [46] Chan JK, Glass GE, Ersek A, et al. Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med. 2015;7(5):547-561. [47] Osterman C, McCarthy MB, Cote MP, et al. Platelet-Rich Plasma Increases Anti-inflammatory Markers in a Human Coculture Model for Osteoarthritis. Am J Sports Med. 2015;43(6):1474-1484. [48] Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2): 111-126. [49] Ribeiro FV, Pino DS, Franck FC, et al. Resveratrol Inhibits Periodontitis-Related Bone Loss in Rats Subjected to Cigarette Smoke Inhalation. J Periodontol. 2017;88(8):788-798. [50] Cornell CN, Lane JM. Newest factors in fracture healing. Clin Orthop Relat Res. 1992(277):297-311. [51] Kolar P, Schmidt-Bleek K, Schell H, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 2010;16(4):427-434. [52] Ghosh D, McGrail DJ, Dawson MR. TGF-beta1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed. Front Cell Dev Biol. 2017;5:28. [53] Lind M, Schumacker B, Soballe K, et al. Transforming growth factor-beta enhances fracture healing in rabbit tibiae. Acta Orthop Scand. 1993;64(5):553-556. [54] Gibon E, Loi F, Cordova LA, et al. Aging Affects Bone Marrow Macrophage Polarization: Relevance to Bone Healing. Regen Eng Transl Med. 2016;2(2):98-104. [55] Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170(6): 2081-2095. [56] Saxena A, Khosraviani S, Noel S, et al. Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine. 2015;74(1): 27-34. [57] Toben D, Schroeder I, El Khassawna T, et al. Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res. 2011;26(1):113-124. [58] Seyhan N, Keskin S, Aktan M, et al. Comparison of the Effect of Platelet-Rich Plasma and Simvastatin on Healing of Critical-Size Calvarial Bone Defects. J Craniofac Surg. 2016; 27(5):1367-1370. [59] Magalon J, Bausset O, Serratrice N, et al. Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy. 2014;30(5):629-638. [60] Okuda K, Kawase T, Momose M, et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol. 2003;74(6):849-857. [61] Yin W, Qi X, Zhang Y, et al. Advantages of pure platelet-rich plasma compared with leukocyte- and platelet-rich plasma in promoting repair of bone defects. J Transl Med. 2016;14:73. [62] Harry LE, Paleolog EM. From the cradle to the clinic: VEGF in developmental, physiological, and pathological angiogenesis. Birth Defects Res C Embryo Today. 2003;69(4):363-374. [63] Alves R, Grimalt R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Skin Appendage Disord. 2018;4(1):18-24. [64] Sarahrudi K, Thomas A, Braunsteiner T, et al. VEGF serum concentrations in patients with long bone fractures: a comparison between impaired and normal fracture healing. J Orthop Res. 2009;27(10):1293-1297. [65] Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther. 2016;16(2): 213-232. [66] Lai F, Kakudo N, Morimoto N, et al. Platelet-rich plasma enhances the proliferation of human adipose stem cells through multiple signaling pathways. Stem Cell Res Ther. 2018;9(1):107. [67] Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4): 1283-1316. [68] Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther. 2011;11(3): 375-385. [69] Younesi M, Knapik DM, Cumsky J, et al. Effects of PDGF-BB delivery from heparinized collagen sutures on the healing of lacerated chicken flexor tendon in vivo. Acta Biomater. 2017; 63:200-209. [70] Huang XD, Zhang H, He MX. A PDGF/VEGF homologue provides new insights into the nucleus grafting operation and immune response in the pearl oyster Pinctada fucata. Gene. 2017;637:1-8. [71] Min Nam S, Bae Kim Y. The effects of platelet-rich plasma on hypertrophic scars fibroblasts. Int Wound J. 2018. [72] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685-700. [73] Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286-1292. [74] Balooch G, Balooch M, Nalla RK, et al. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A. 2005;102(52):18813-18818. [75] Gutierrez-Fernandez A, Inada M, Balbin M, et al. Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). Faseb j. 2007;21(10):2580-2591. [76] Danielpour D, Song K. Cross-talk between IGF-I and TGF-beta signaling pathways. Cytokine Growth Factor Rev. 2006;17(1-2):59-74. [77] Wang T, Wang Y, Menendez A, et al. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. J Bone Miner Res. 2015; 30(9):1572-1584. [78] Griffin XL, Smith CM, Costa ML. The clinical use of platelet-rich plasma in the promotion of bone healing: a systematic review. Injury. 2009;40(2):158-162. [79] 张长青,袁霆.富血小板血浆在临床应用中的争议与研究进展[J].中华关节外科杂志(电子版),2016,10(6):588-591.[80] Schneppendahl J, Jungbluth P, Sager M, et al. Synergistic effects of HBO and PRP improve bone regeneration with autologous bone grafting. Injury. 2016;47(12):2718-2725. [81] He F, Chen Y, Li J, et al. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. J Biomed Mater Res A. 2015;103(4):1312-1324. [82] Zhang XL, Shi KQ, Jia PT, et al. Effects of platelet-rich plasma on angiogenesis and osteogenesis-associated factors in rabbits with avascular necrosis of the femoral head. Eur Rev Med Pharmacol Sci. 2018;22(7):2143-2152. [83] 王毅,刘杨,杜军,等.PRP及PRP/OAM对种植体周围骨缺损修复的实验研究[J].口腔医学,2017,37(4):302-306.[84] Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12(12):3405-3416.[85] Sassoli C, Vallone L, Tani A, et al. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res. 2018;372(3):549-570. [86] Souza TF, Sakamoto SS, Ferreira GT, et al. Osteogenic potential of mesenchymal cells derived from canine umbilical cord matrix co-cultured with platelet-rich plasma and demineralized bone matrix. J Vet Sci. 2015;16(3):381-384. [87] Pieri F, Lucarelli E, Corinaldesi G, et al. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg. 2009;67(2):265-272. [88] Rodrigues SV, Acharya AB, Thakur SL. An evaluation of platelet-rich plasma without thrombin activation with or without anorganic bone mineral in the treatment of human periodontal intrabony defects. Platelets. 2011;22(5):353-360. [89] Kassolis JD, Rosen PS, Reynolds MA. Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol. 2000;71(10):1654-1661. [90] Zhong D, Wang CG, Yin K, et al. In vivo ossification of a scaffold combining beta-tricalcium phosphate and platelet-rich plasma. Exp Ther Med. 2014;8(5):1381-1388. [91] Markou N, Pepelassi E, Vavouraki H, et al. Treatment of periodontal endosseous defects with platelet-rich plasma alone or in combination with demineralized freeze-dried bone allograft: a comparative clinical trial. J Periodontol. 2009; 80(12):1911-1919. [92] Cole BJ, Karas V, Hussey K, et al. Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis. Am J Sports Med. 2017;45(2):339-346. [93] 侯晓明,李丽,臧静一,等.富血小板血浆(PRP)用于膝关节骨性关节炎关节软骨修复作用研究[J].临床医药文献电子杂志, 2017, 4(92):18036-18037.[94] 刘步云,孙育良,何本祥,等.关节腔注射富血小板血浆与玻璃酸钠治疗膝关节骨关节炎的疗效比较[J].实用骨科杂志, 2017,23(1): 71-73.[95] Guney A, Akar M, Karaman I, et al. Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2384-2389. [96] 乔永平,原巧玲,丛培军,等.Ilizarov重建外固定技术联合PRP免植骨治疗超大段胫骨缺损[J].中国骨与关节损伤杂志, 2016, 31(12):1323-1325.[97] 蒋李青,方炳木,赵冬梅,等.富血小板血浆复合人工骨植骨治疗骨折不愈合合并骨缺损[J].中医正骨,2016,28(12):58-60.[98] Gianakos A, Zambrana L, Savage-Elliott I, et al. Platelet-Rich Plasma in the Animal Long-Bone Model: An Analysis of Basic Science Evidence. Orthopedics. 2015;38(12):e1079-1090. |
[1] | 蒋红英, 朱 亮, 余 曦, 黄 靖, 向小娜, 兰正燕, 何红晨. 富血小板血浆干预脊髓损伤患者压力性损伤的作用[J]. 中国组织工程研究, 2021, 25(8): 1149-1153. |
[2] | 袁新平, 邵艳波, 吴 超, 汪剑龄, 童梁成, 李 颖. 骨折端CT扫描参数个性化微分建模仿真目标骨段的准确性[J]. 中国组织工程研究, 2021, 25(6): 912-916. |
[3] | 何祥忠, 陈海云, 刘 军, 吕 阳, 潘建科, 杨文斌, 何静雯, 黄俊翰. 富血小板血浆联合微骨折对比微骨折治疗膝关节软骨病变的Meta分析[J]. 中国组织工程研究, 2021, 25(6): 964-969. |
[4] | 化昊天, 赵文宇, 张 磊, 白文博, 王新卫. 抗生素人工骨治疗慢性骨髓炎疗效和安全性的Meta分析[J]. 中国组织工程研究, 2021, 25(6): 970-976. |
[5] | 张 宾, 孙丽华, 张俊花, 刘玉三, 崔彩云. 改良翻瓣即刻种植有利于上颌前牙区的软硬组织重建[J]. 中国组织工程研究, 2021, 25(5): 707-712. |
[6] | 邓桢翰, 黄 勇, 肖璐璐, 陈昱霖, 朱伟民, 陆 伟, 王大平. 骨形态发生蛋白在关节软骨再生过程中的作用与应用[J]. 中国组织工程研究, 2021, 25(5): 798-806. |
[7] | 王玉姣, 刘 丹, 孙 嵩, 孙 勇. 改良型富血小板纤维蛋白复合双相磷酸钙可促进兔骨髓间充质干细胞的活性[J]. 中国组织工程研究, 2021, 25(4): 504-509. |
[8] | 李晨杰, 吕林蔚, 宋 阳, 刘静娜, 张春秋. 预紧力作用下钛合金人工假体界面骨小梁形态参数测量与统计分析[J]. 中国组织工程研究, 2021, 25(4): 516-520. |
[9] | 刘江锋. 纳米羟基磷灰石/聚酰胺66复合材料联合锁定钢板治疗股骨骨纤维异常增殖症[J]. 中国组织工程研究, 2021, 25(4): 542-547. |
[10] | 马子越, 巨啸晨, 张 磊, 孙荣鑫. 保留与不保留残端重建前交叉韧带后移植物腱骨愈合的比较[J]. 中国组织工程研究, 2021, 25(4): 582-587. |
[11] | 李晓壮, 段 浩, 王伟舟, 唐志宏, 王旸昊, 何 飞. 骨组织工程材料治疗骨缺损疾病在体内实验中的应用[J]. 中国组织工程研究, 2021, 25(4): 626-631. |
[12] | 贺 杰, 常 祺. 四肢恶性骨肿瘤骨切除后大段骨缺损的生物重建[J]. 中国组织工程研究, 2021, 25(3): 420-425. |
[13] | 邢 浩, 张永红, 王 栋. 长骨大段骨缺损修复方法的优势与不足[J]. 中国组织工程研究, 2021, 25(3): 426-430. |
[14] | 赵露婷, 方其林, 唐海燕, 胥方元. 自体、同种异体纯化富血小板血浆治疗兔膝骨关节炎的差异[J]. 中国组织工程研究, 2021, 25(26): 4123-4129. |
[15] | 彭竑程, 华 臻, 王建伟. MiR-21——骨再生及多种骨疾病的重要调控因子[J]. 中国组织工程研究, 2021, 25(26): 4198-4203. |
1.1 资料来源 作者应用计算机在PubMed数据库检索1970年7月至2018年7月相关文献,以“platelet-rich plasma;bone defect;bone regeneration;growth factors”为英文检索词,以“富血小板血浆,骨缺损,骨再生,生长因子”为中文检索词。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||